Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

For

Core-shell FTO@Co₃O₄ Nanoparticles as Active and Stable Anode

Catalysts for Acidic Oxygen Evolution Reaction and Proton

Exchange Membrane Water Electrolysis

Yong-Xian Yeh, Chih-Chieh Cheng, Pei-Syuan Jhu, Shin-Hong Lin, Po-Wei Chen, Shih-Yuan Lu*

Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013,

Taiwan.

*Email: <u>sylu@mx.nthu.edu.tw</u> (Shih-Yuan Lu)

Figure S1. Thermogravimetric curve of $FTO@Co(OH)_2$ in air. Heating rate: 5 °C min⁻¹.

Figure S2. SEM images of (a) FTO and (b) Co_3O_4 nanoparticles. Insets show size distributions of nanoparticles.

Figure S3. Pore size distribution of (a)FTO (b)FTO@Co₃O₄ (c) Co₃O₄ (d) $Co_3O_4@FTO$ nanoparticles.

Figure S4. XPS survey spectra of (a) FTO, (b) $FTO@Co_3O_4$, (c) Co_3O_4 , and (d) $Co_3O_4@FTO$.

Figure S5. Tafel plots of FTO/CP, FTO@Co₃O₄/CP, Co₃O₄/CP, Co₃O₄@FTO/CP, and Co₃O₄/FTO(50wt%)/CP.

Figure S6. Equivalent circuit model: R_s for solution resistance, CPE for constant phase element accounting for electrode porosity, R_p for electrode porosity resistance, C_{dl} for double layer capacitance, and R_{ct} for charge transfer resistance.

Figure S7. (a) Percentages of Co leaching from $FTO@Co_3O_4/CP$ operated at 10 mA cm⁻² during course of 20 hours. (b) HRXPS spectra of Co 2p of $FTO@Co_3O_4/CP$ after operations at 10 mA cm⁻² for 0 and 8 hours.

Figure S8. Theoretical and experimental O_2 generation for determination of Faradaic efficiency of FTO@Co₃O₄/CP operated at 10 mA cm⁻² for 60 min. Experimental test conditions: 0.25 cm² for electrode surface area and 298 K for temperature.

Figure S9. SEM images of (a) anode $(FTO@Co_3O_4)$ and (b) cathode (Pt/C).

Membrane	Cathode catalyst	Anode catalyst	Current density	Reference
(temperature)	(loading in mg	(loading in mg	@2 V (in A cm ⁻	
	cm ⁻²)	cm ⁻²)	2)	
N115 (25°C)	Pt/C (0.2)	FTO@Co ₃ O ₄	0.205	This work
		(3.0)		
N115 (80 °C)	Pt/C (0.5)	CoHFe/ATO	0.05-0.1	[S1]
		(2.0)		
N117 (25°C)	Pt/C (0.5)	Co/29BC	0.12	[S2]
		(N/A)		
N117 (25°C)	Pt/C (0.1)	γ-MnO ₂	0.13	[S3]
		(3.5)		

 Table S1. PEMWE performances of non-noble metal based anode catalysts.

Reference:

[S1] B. Rodríguez-García, Á. Reyes-Carmona, I. Jiménez-Morales, M. Blasco-Ahicart, S. Cavaliere, M. Dupont, D. Jones, J. Rozière, J.R. Galán-Mascarós, F. Jaouen, Cobalt hexacyanoferrate supported on Sb-doped SnO₂ as a non-noble catalyst for oxygen evolution in acidic medium, Sustainable Energy & Fuels 2(3) (2018) 589-597. <u>https://doi.org/10.1039/C7SE00512A</u>.

[S2] Q. Lai, V. Vediyappan, K.-F. Aguey-Zinsou, H. Matsumoto, One-Step Synthesis of Carbon-Protected Co₃O₄ Nanoparticles toward Long-Term Water Oxidation in Acidic Media, Advanced Energy and Sustainability Research 2(11) (2021) 2100086. <u>https://doi.org/https://doi.org/10.1002/aesr.202100086</u>.

[S3] A. Li, H. Ooka, N. Bonnet, T. Hayashi, Y. Sun, Q. Jiang, C. Li, H. Han, R.
Nakamura, Stable Potential Windows for Long-Term Electrocatalysis by Manganese
Oxides Under Acidic Conditions, Angew Chem Int Ed Engl 58(15) (2019) 5054-5058.
https://doi.org/10.1002/anie.201813361.