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1. Pulse radiolysis experiments
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Figure. S1 Decay curves of the absorbance for (CH3)2ĊOH at 300 nm in isopropanol (0.2 mol L−1) 

aqueous solution with (a) and without (b) the addition of GO (0.15 mg mL−1). The absorbed dose 

in pulse radiolysis experiments was 65 Gy pulse−1.
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Figure. S2 Decay curves of the absorbance for eaq
− at 720 nm with (a) and without 0.13 mmol L−1 

of Eu3+ (b). Apparent reaction rates between eaq
– and GO (c). The aqueous dispersion contained 0.2 

mol L−1 of isopropanol and different concentrations of GO. The absorbed dose in pulse radiolysis 

experiments was 16 Gy pulse−1.
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The rate constant between eaq
– and GO was calculated as follows.

For a second-order reaction,

(S1)A B C 

The reaction rate can be expressed as,

(S2)

[ ]- [ ][ ]d A k A B
dt



where [A] and [B], whose units are both mol·L−1, are the concentrations of A and B respectively. k 

is the rate constant of the second-order reaction, whose unit is L·mol−1·s−1. When the concentration 

of B is much higher than that of A, the concentration of B almost remains constant during the 

reaction. Thus [A] decays according to a pseudo-first-order reaction kinetics. Then Equation S2 is 

simplified to Equation S3.

(S3)

[ ]- '[ ]d A k B
dt



where k' = k[B]. The unit of k' is s−1.

The apparent reaction rate (kobs) of eaq
− in Figure. S2c is the k' in Equation S3. The concentration 

of GO was much higher than that of eaq
− produced by water radiolysis. Thus k between eaq

− and GO 

was obtained by linear fitting of the kobs vs. [GO] plots.

After addition of Eu3+, the linear fitting displayed an intercept of 8 × 106 s−1, which was caused by 

the rapid reaction between eaq
− and Eu3+. The k between eaq

− and Eu3+ was estimated to be 6.5 × 1010 

L mol−1 s−1 (8.5 × 106 s−1/1.3 × 10−4 mol L−1).
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2. Eu3+-induced pre-assembly of GO

a b c

Figure. S3. Photographs of GO dispersion (a), GO dispersion with addition of Eu3+ at pH 2 (b) and 

6 (c).

3. Characterization of pristine GO
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Figure. S4 XPS C 1s spectrum of GO.
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Figure. S5 XRD patterns of rGO-6 and rGO-Eu-6, diffraction peaks of NaCl (JCPDS Card no. 05-

0628).
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Figure. S6 Pore size distributions of rGO-2, rGO-Eu-2, rGO-6, and rGO-Eu-6 measured by 

mercury intrusion porosimetry.
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4. Comparison in the adsorption performance

Table S1. Comparison in the maximum adsorption capacities (qm) of organic pollutants on different 

adsorbents.

Adsorbents
qm for organic solvents

(g g−1)

qm for organic dyes

(mg g−1)
Ref.

graphene sponge 20–86 – [1]

reduced graphene oxide foam 70–122 – [2]

Freeze-dried CNF/graphene 44–265 – [3]

CdS/RGO aerogel 122‒298 – [4]

Cyclodextrin/graphene oxide aerogel – 186.2 (methyl orange) [5]

Functionalized graphene oxide aerogel – 202.8 (methyl orange) [6]

Carbon nanotubes and cellulose nanofiber 

incorporated graphene aerogel
–

51.6 (methyl orange)

101.0 (rhodamine 6G)
[7]

Cellulose/graphene oxide composite aerogel – 68 (methylene B) [8]

Layered double hydroxides-assembled 

graphene oxide aerogel
– 96–125 (methylene B) [9]

rGO-Eu-2 aerogel 81–395

1173.4 (eriochrome black T)

230.4 (methyl orange)

906.8 (malachite green)

173.7 (rhodamine 6G)

206.8 (methylene B)

This 

work

rGO-Eu-6 aerogel 12‒25

1572.5 (eriochrome black T)

312.6 (methyl orange)

1367.6 (malachite green)

160.9 (rhodamine 6G)

95.4 (methylene B)

This 

work
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5. Solid-state excitation and emission spectra of rGO-Eu-2
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Figure. S7. Solid-state excitation (a) and emission (b) spectra of rGO-Eu-2.

6. UV-vis absorption spectra of different organic solvents
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Figure. S8. UV-vis absorption spectra of different organic solvents.



8

7. Adsorption performance for anionic dyes
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Figure. S9 Adsorption amounts of anionic dyes on per unit area of rGO-2 and rGO-Eu-2 aerogels.

8. Calculation of Eu contents in rGO-Eu aerogels

The contents of Eu in aerogels were obtained according the concentration of Eu in dispersion 

before and after irradiation. The contents were calculated by the following Equation S4,

(S4)
𝐶𝑜𝑛𝑡𝑒𝑛𝑡 =

(𝑐0 ‒ 𝑐𝑒) × 𝑉
𝑚

where c0 (mg L−1) and ce (mg L−1) are the concentrations of Eu in dispersion before and after 

irradiation, respectively. m (g) and V (L) are the weight of GO and the volume of dispersion, 

respectively. For determining the concentration of Eu after irradiation (ce), supernate of 

irradiated dispersion was obtained by centrifugation (10000 rpm, 5 min). Then Eu concentration 

of supernate was determined using an inductively coupled plasma optical emission spectrometer 

(ICP-OES, PerkinElmer Optima 7300DV).
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