Supporting Information

Reduced graphene oxide composite aerogel prepared by europium-assisting

radiation reduction as a broad-spectrum adsorbent for organic pollutants

Peng Zhang^a, Yizhi Chen^a, Hanqin Weng^{a,b,*}, Yusa Muroya^b, Shinichi Yamashita^{c,d}, Yinhua Zhao^e,

Mingzhang Lin^a

a. School of Nuclear Science and Technology, University of Science and Technology of China,

Hefei, Anhui 230026, China

b. SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka,

Ibaraki, Osaka 567-0047, Japan

c. Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-

shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188, Japan

d. Department of Nuclear Engineering and Management, School of Engineering, The University of

Tokyo, 4-7-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

e. Instruments Center for Physical Science, University of Science and Technology of China, Hefei,

Anhui 230026, China

* To whom correspondence should be addressed. Email: <u>hanqinw@ustc.edu.cn</u> (H. Q. Weng)

1. Pulse radiolysis experiments

Figure. S1 Decay curves of the absorbance for $(CH_3)_2\dot{C}OH$ at 300 nm in isopropanol (0.2 mol L⁻¹) aqueous solution with (**a**) and without (**b**) the addition of GO (0.15 mg mL⁻¹). The absorbed dose in pulse radiolysis experiments was 65 Gy pulse⁻¹.

Figure. S2 Decay curves of the absorbance for e_{aq}^{-} at 720 nm with (**a**) and without 0.13 mmol L⁻¹ of Eu³⁺ (**b**). Apparent reaction rates between e_{aq}^{-} and GO (**c**). The aqueous dispersion contained 0.2 mol L⁻¹ of isopropanol and different concentrations of GO. The absorbed dose in pulse radiolysis experiments was 16 Gy pulse⁻¹.

The rate constant between e_{aq}^{-} and GO was calculated as follows.

For a second-order reaction,

$$A + B \to C \tag{S1}$$

The reaction rate can be expressed as,

$$-\frac{d[A]}{dt} = k[A][B]$$
(S2)

where [A] and [B], whose units are both mol·L⁻¹, are the concentrations of A and B respectively. k is the rate constant of the second-order reaction, whose unit is L·mol⁻¹·s⁻¹. When the concentration of B is much higher than that of A, the concentration of B almost remains constant during the reaction. Thus [A] decays according to a pseudo-first-order reaction kinetics. Then **Equation S2** is simplified to **Equation S3**.

$$-\frac{d[A]}{dt} = k'[B]$$
(S3)

where k' = k[B]. The unit of k' is s⁻¹.

The apparent reaction rate (k_{obs}) of e_{aq}^- in **Figure. S2c** is the k' in **Equation S3**. The concentration of GO was much higher than that of e_{aq}^- produced by water radiolysis. Thus k between e_{aq}^- and GO was obtained by linear fitting of the k_{obs} vs. [GO] plots.

After addition of Eu³⁺, the linear fitting displayed an intercept of $8 \times 10^6 \text{ s}^{-1}$, which was caused by the rapid reaction between e_{aq}^- and Eu³⁺. The *k* between e_{aq}^- and Eu³⁺ was estimated to be 6.5×10^{10} L mol⁻¹ s⁻¹ ($8.5 \times 10^6 \text{ s}^{-1}/1.3 \times 10^{-4} \text{ mol L}^{-1}$).

2. Eu³⁺-induced pre-assembly of GO

Figure. S3. Photographs of GO dispersion (a), GO dispersion with addition of Eu³⁺ at pH 2 (b) and

6 (**c**).

3. Characterization of pristine GO

Figure. S4 XPS C 1s spectrum of GO.

Figure. S5 XRD patterns of rGO-6 and rGO-Eu-6, diffraction peaks of NaCl (JCPDS Card no. 05-0628).

Figure. S6 Pore size distributions of rGO-2, rGO-Eu-2, rGO-6, and rGO-Eu-6 measured by mercury intrusion porosimetry.

4. Comparison in the adsorption performance

Adsorbents	$q_{\rm m}$ for organic solvents (g g ⁻¹)	$q_{\rm m}$ for organic dyes (mg g ⁻¹)	Ref.
reduced graphene oxide foam	70–122	-	[2]
Freeze-dried CNF/graphene	44–265	-	[3]
CdS/RGO aerogel	122–298	-	[4]
Cyclodextrin/graphene oxide aerogel	-	186.2 (methyl orange)	[5]
Functionalized graphene oxide aerogel	-	202.8 (methyl orange)	[6]
Carbon nanotubes and cellulose nanofiber		51.6 (methyl orange)	[7]
incorporated graphene aerogel	-	101.0 (rhodamine 6G)	
Cellulose/graphene oxide composite aerogel	_	68 (methylene B)	[8]
Layered double hydroxides-assembled			503
graphene oxide aerogel	-	96–125 (methylene B)	[9]
rGO-Eu-2 aerogel	81–395	1173.4 (eriochrome black T)	This work
		230.4 (methyl orange)	
		906.8 (malachite green)	
		173.7 (rhodamine 6G)	
		206.8 (methylene B)	
rGO-Eu-6 aerogel	12–25	1572.5 (eriochrome black T)	This work
		312.6 (methyl orange)	
		1367.6 (malachite green)	
		160.9 (rhodamine 6G)	
		95.4 (methylene B)	

Table S1. Comparison in the maximum adsorption capacities (q_m) of organic pollutants on different

adsorbents.

5. Solid-state excitation and emission spectra of rGO-Eu-2

Figure. S7. Solid-state excitation (a) and emission (b) spectra of rGO-Eu-2.

6. UV-vis absorption spectra of different organic solvents

Figure. S8. UV-vis absorption spectra of different organic solvents.

7. Adsorption performance for anionic dyes

Figure. S9 Adsorption amounts of anionic dyes on per unit area of rGO-2 and rGO-Eu-2 aerogels.

8. Calculation of Eu contents in rGO-Eu aerogels

The contents of Eu in aerogels were obtained according the concentration of Eu in dispersion before and after irradiation. The contents were calculated by the following **Equation S4**,

$$Content = \frac{(c_0 - c_e) \times V}{m}$$
(S4)

where $c_0 \text{ (mg } L^{-1})$ and $c_e \text{ (mg } L^{-1})$ are the concentrations of Eu in dispersion before and after irradiation, respectively. *m* (g) and *V* (L) are the weight of GO and the volume of dispersion, respectively. For determining the concentration of Eu after irradiation (c_e), supernate of irradiated dispersion was obtained by centrifugation (10000 rpm, 5 min). Then Eu concentration of supernate was determined using an inductively coupled plasma optical emission spectrometer (ICP-OES, PerkinElmer Optima 7300DV).

Reference

[1] H. Bi, X. Xie, K. Yin, Y. Zhou, S. Wan, L. He, F. Xu, F. Banhart, L. Sun, R.S. Ruoff, Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents, Adv Funct Mater 22(21) (2012) 4421-4425. https://doi.org/10.1002/adfm.201200888.

[2] Y. He, Y. Liu, T. Wu, J. Ma, X. Wang, Q. Gong, W. Kong, F. Xing, Y. Liu, J. Gao, An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity, J Hazard Mater 260 (2013) 796-805. https://doi.org/10.1016/j.jhazmat.2013.06.042.
[3] X. Yao, W. Yu, X. Xu, F. Chen, Q. Fu, Amphiphilic, ultralight, and multifunctional graphene/nanofibrillated cellulose aerogel achieved by cation-induced gelation and chemical reduction, Nanoscale 7(9) (2015) 3959-3964. https://doi.org/10.1039/c4nr07402e.

[4] R. Xu, W. Liu, J. Cai, Z. Li, Robust RGO composite aerogels with high adsorption capabilities for organic pollutants in water, Sep Purif Technol 257 (2021) 117876. https://doi.org/10.1016/j.seppur.2020.117876.

[5] Z.-J. Nie, Q.-F. Guo, H. Xia, M.-M. Song, Z.-J. Qiu, S.-T. Fan, Z.-H. Chen, S.-X. Zhang, S. Zhang,
B.-J. Li, Cyclodextrin self-assembled graphene oxide aerogel microspheres as broad-spectrum adsorbent
for removing dyes and organic micropollutants from water, J Environ Chem Eng 9(2) (2021) 104749.

[6] J. Xu, P. Du, W. Bi, G. Yao, S. Li, H. Liu, Graphene oxide aerogels co-functionalized with polydopamine and polyethylenimine for the adsorption of anionic dyes and organic solvents, Chem Eng Res Des 154 (2020) 192-202.

[7] T. Shimizu, K.K.H. De Silva, M. Hara, M. Yoshimura, Facile synthesis of carbon nanotubes and cellulose nanofiber incorporated graphene aerogels for selective organic dye adsorption, Appl Surf Sci

600 (2022) 154098.

[8] Fang, Ren, Zhen, Li, Wen-Zhen, Tan, Xiao-Hui, Liu, Zhen-Feng, Sun, Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with high-efficiency adsorption towards methylene blue, J Colloid Interf Sci (2018) https://doi.org/10.1016/j.jcis.2018.07.101.

[9] Q. Fang, B. Chen, Self-assembly of graphene oxide aerogels by layered double hydroxides crosslinking and their application in water purification, J Mater Chem A 2(23) (2014) 8941-8951. https://doi.org/10.1039/C4TA00321G.