Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 20XX

Optimized electron/ion transport by constructing radially oriented channels in MXene hybrid fiber electrodes for highperformance supercapacitors at low temperatures

Tianyu Zhao,^{a,b} Dongzhi Yang,^{a,*} Shu-Meng Hao,^a Ting Xu,^b Ming Zhang,^b Weidong Zhou^a and Zhong-Zhen Yu^{a,b*}

^a State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and

Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

E-mail: yangdz@mail.buct.edu.cn

^b Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University

of Chemical Technology, Beijing, 100029, China.

E-mail: yuzz@mail.buct.edu.cn

Fig. S1. TEM images of (a) $Ti_3C_2T_x$ nanosheets and (b) GO nanosheets.

Fig. S2. SEM images of the surface structures of (a, b) U-MGP₃ and (c, d) D-MGP₃ fibers.

Fig. S3. SEM images of cross-sectional and surface structures of (a-d) $D-MGP_1$, (e-h) $D-MGP_2$, and (i-l) $D-MGP_4$ fibers.

Fig. S4. Pore size distributions and the typical nitrogen adsorption and desorption isotherms of (a, b) D-MGP₃ and (c, d) U-MGP₃.

Fig. S5. Stress-strain curve of D-MGP₃.

Fig. S6. XRD spectra of RGO and GO.

Fig. S7. FT-IR spectra of D-MGP₃ and MXene.

Fig. S8. Tyndall effects of $Ti_3C_2T_x$, GO, and $Ti_3C_2T_x$ /GO/PEDOT:PSS suspensions.

Fig. S9. CV curves of (a, b) D-MGP₁, (c, d) D-MGP₂, and (e, f) D-MGP₄ fibers.

Fig. S10. (a, b) CV curves of U-MGP₃ at different scan rates; (c, d) GCD curves of U-MGP₃

at 0.25-50 A g⁻¹.

Fig. S11. Tortuosity is closely related to the size, shape, and arrangement of nanostructure in electrodes. Structures with (a) vertically aligned nanosheets and (b) randomly distributed isotropic nanosheets. (c) Schematic diagram of the ion transport pathways in D-MGP₃ and U-MGP₃.

Fig. S12. Plots of $v^{1/2}$ vs. $i/v^{1/2}$ used for calculating constants k_1 and k_2 at different potentials

of -0.6~0.2 V for (a) D-MGP_3, and (b) U-MGP_3 fiber electrodes.

Fig. S13. Fluorescent images of the cross-sections of (a) $U-MGP_3$ and (b) $D-MGP_3$ fiber electrodes soaked in the electrolyte.

Fig. S14. Cycling stability of the fiber supercapacitor under the voltages of 0-0.8 V at a scan rate of 100 mV s⁻¹ after 10000 cycles.

Fig. S15. DSC curves of the $H_2O/PVA/H_2SO_4$ electrolyte, and the EMIES/PVA/H_2SO₄ antifreezing electrolyte.

Samples	$R_s(\Omega)$	$R_{ct} (\Omega)$
D-MGP ₁	1.315	0.761
D-MGP ₂	1.091	0.545
D-MGP ₃	0.579	0.284
D-MGP ₄	1.763	0.579
U-MGP ₃	1.021	0.718

Table S1. The simulated $R_{\rm s}$ and $R_{\rm ct}$ values of the hybrid fibers.

Table S2. Comparison of electrochemical performances of the D-MGP3 with those of other

MXene-based electrodes reported	•
---------------------------------	---

Samples	Electrolytes	Electrochemical Performances	Rate Performances	Refs.
Ti ₃ C ₂ T _x	$3 \text{ M H}_2 \text{SO}_4$	380 F g ⁻¹ @ 2 mV s ⁻¹	210 F g ⁻¹ @ 2000 mV s ⁻¹	1
$Ti_3C_2T_x$ with alkali treatment	1 M H ₂ SO ₄	314 F g ⁻¹ @ 2 mV s ⁻¹	254 F g ⁻¹ @ 1 A g ⁻¹ 175 F g ⁻¹ @ 10 A g ⁻¹	2
d-Ti ₃ C ₂ T _x /glycine	$3 \text{ M H}_2 \text{SO}_4$	324 F g ⁻¹ @ 10 mV s ⁻¹	150 F g ⁻¹ @ 1000 mV s ⁻¹	3
Few-layer Ti ₃ C ₂ T _x MXene	1 M H ₂ SO ₄	255 F g ⁻¹ @ 2 mV s ⁻¹	150 F g ⁻¹ @ 200 mV s ⁻¹	4
MXene/CNT yarn	3 M H ₂ SO ₄	523 F g ⁻¹ @ 2 mA cm ⁻²	283 F g ⁻¹ @ 20 mA cm ⁻²	5
Ti ₃ C ₂ T _x /PPy	1 M H ₂ SO ₄	416 F g ⁻¹ @ 5 mV s ⁻¹	270 F g ⁻¹ @ 100 mV s ⁻¹	6
Lignosulfonate /MXene/rGO	3 M H ₂ SO ₄	386 F g ⁻¹ @ 2 mV s ⁻¹	241 F g ⁻¹ @ 100 mV s ⁻¹	7
Ti ₃ C ₂ T _x /rGO fiber	$1 \text{ M H}_2\text{SO}_4$	195 F g ⁻¹ @ 0.1 A g ⁻¹	195 F g ⁻¹ @ 0.1 A g ⁻¹ 51 F g ⁻¹ @ 5 A g ⁻¹	8
Ti ₃ C ₂ T _x /PEDOT:PS S fiber	1 M H ₂ SO ₄	258 F g ⁻¹ @ 5 mV s ⁻¹	158 F g ⁻¹ @ 1000 mV s ⁻¹	9
$Ti_3C_2T_x$ fiber	$1 \text{ M H}_2 \text{SO}_4$	434 F g ⁻¹ @ 5 mV s ⁻¹	203 F g ⁻¹ @ 100 mV s ⁻¹	10
Ti ₃ C ₂ T _x /rGO	$3 \text{ M H}_2 \text{SO}_4$	300 F g ⁻¹ @ mV s ⁻¹	250 F g ⁻¹ @ 1000 mV s ⁻¹	11
Ti ₃ C ₂ T _x	$3 \text{ M H}_2 \text{SO}_4$	324 F g ⁻¹ @ 5 mV s ⁻¹	270 F g ⁻¹ @ 1000 mV s ⁻¹	12
D-MGP ₃	3 M H ₂ SO ₄	475 F g ⁻¹ @ 5 mV s ⁻¹	366 F g ⁻¹ @ 1000 mV s ⁻¹	this work

References:

- M. R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel, M. D. Levi, J. Halim, P.-L. Taberna, M. W. Barsoum, P. Simon and Y. Gogotsi, *Nat. Energy*, 2017, 2, 17105.
- [2] T. Li, L. Yao, Q. Liu, J. Gu, R. Luo, J. Li, X. Yan, W. Wang, P. Liu, B. Chen, W. Zhang,
 W. Abbas, R. Naz and D. Zhang, *Angew. Chem., Int. Ed.*, 2018, 57, 6115-6119.
- [3] C. Chen, M. Boota, P. Urbankowski, B. Anasori, L. Miao, J. Jiang and Y. Gogotsi, J. Mater. Chem. A, 2018, 6, 4617-4622.
- [4] X. Wang, L. Dong, W. Liu, Y. Huang, X. Pu, J. Wang, F. Kang, J. Li and C. Xu, J. Energy Chem., 2020, 48, 233-240.
- [5] Z. Wang, S. Qin, S. Seyedin, J. Zhang, J. Wang, A. Levitt, N. Li, C. Haines, R. Ovalle-Robles, W. Lei, Y. Gogotsi, R. H. Baughman and J. M. Razal, *Small*, 2018, 14, 1802225.
- [6] M. Boota, B. Anasori, C. Voigt, M. Q. Zhao, M. W. Barsoum and Y. Gogotsi, Adv. Mater., 2016, 28, 1517-1522.
- [7] L. Ma, T. Zhao, F. Xu, T. You and X. Zhang, Chem. Eng. J., 2021, 405, 126694.
- [8] Z. Wang, Y. Chen, M. Yao, J. Dong, Q. Zhang, L. Zhang and X. Zhao, J. Power Sources, 2020, 448, 227398.
- [9] J. Zhang, S. Seyedin, S. Qin, Z. Wang, S. Moradi, F. Yang, P. A. Lynch, W. Yang, J. Liu, X. Wang and J. M. Razal, *Small*, 2019, 15, 1804732.
- [10] J. Zhang, S. Uzun, S. Seyedin, P. A. Lynch, B. Akuzum, Z. Wang, S. Qin, M. Alhabeb,
 C. E. Shuck, W. Lei, E. C. Kumbur, W. Yang, X. Wang, G. Dion, J. M. Razal and Y.
 Gogotsi, ACS Cent. Sci., 2020, 6, 254-265.

- [11]Z. Wu, X. Liu, T. Shang, Y. Deng, N. Wang, X. Dong, J. Zhao, D. Chen, Y. Tao and Q.
 H. Yang, *Adv. Funct. Mater.*, 2021, **31**, 2102874.
- [12]J. Tang, T. Mathis, X. Zhong, X. Xiao, H. Wang, M. Anayee, F. Pan, B. Xu and Y. Gogotsi, Adv. Energy Mater., 2020, 11, 2003025.