Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Superior oxygen evolution reaction performance of NiCoFe spinel oxide nanowires insitu grown on β-Ni(OH)₂ nanosheets-decorated Ni foam: case studies on stoichiometric and off-stoichiometric oxides

Prerna Upale,^a Seema Verma^{*a} and Satishchandra B. Ogale ^{a,b} Corresponding Author: <u>sa.verma@iiserpune.ac.in</u>

^aIndian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India.

^bResearch Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology (TCG-CREST), Kolkata 700091, India.

This file includes following details:

Tables S1, S2, S3 and S4. Figures S1, S2 and S3

Table S1. Sample codes with the respective NiCoFe Sample

S. No.	NiCoFe camples	Sample codes	Hetero-structure sample codes (*)
1.	NiCo _{2-x} Fe _x O ₄	N1C11; for x = 0.125 N1C12; for x = 0.25	N1C11@NiO@NF N1C12@NiO@NF
2.	Ni _{0.75} Co _{2.25-x} Fe _x O ₄	N2C21; for x = 0.125 N2C22; for x = 0.25	N2C21@NiO@NF N2C22@NiO@NF
			(*) : NiO@NF is the β -Ni(OH) ₂ decorated Nickel foam annealed at 350°C

Table S2. Results of the fit of the Ni 2p X-ray Photoelectron Spectra for N1C12@NiO@NF and N2C22@NiO@NF electrocatalysts

		Spin-Orbit Doublet I		Spin-Orbit Doublet II		
Sample	Parameter	Ni 2p _{3/2}	Ni 2p _{1/2}	Ni 2p _{3/2}	Ni 2p _{1/2}	
N1C12@NiO@NF	Eg (eV)	854.3	871.9	855.8	873.6	
	fwhm (eV)	1.4	2.0	3.3	3.0	
	area _{rel} (%)	18		82		
	assignment	Ni ²⁺		Ni ³⁺		
N2C22@NiO@NF	Eg (eV)	854.1	871.6	855.9	873.3	
	fwhm (eV)	1.4	1.8	3.1	3.1	
	area _{rel} (%)	26 74 Ni ²⁺ Ni ³⁺		74	74	
	assignment					

Table S3. Results of the fit of the Co 2p X-ray Photoelectron Spectra for N1C12@NiO@NF andN2C22@NiO@NF electrocatalysts

		Spin-Orbit Doublet I		Spin-Orbit Doublet II	
Sample	Parameter	Co 2p _{3/2}	Co 2p _{1/2}	Co 2p _{3/2}	Co 2p _{1/2}
N1C12@NiO@NF	Eg (eV)	779.5	794	781	796.4
	fwhm (eV)	1.9	1.9	3.4	3.0
	area _{rel} (%)	33		67	
	assignment	Co ³⁺		Co ²⁺	
N2C22@NiO@NF	Eg (eV)	779.7	794.9	781.4	796.6
	fwhm (eV)	2.4	1.9	3.4	2.8
	area _{rel} (%)	51		49	
	assignment	Co ³⁺		Co ²⁺	

Electrocatalysts	Electrolyte	Overpotential, η (mV)	Tafel Slope (mV/dec)	Ref.
NiCo oxides	1 М КОН	340 at 10 mA/cm ²	51	S1
rNiCo ₂ O ₄ /Ni	0.1 М КОН	379 at 10 mA/cm ²	63.4	S2
NiO/NiCo ₂ O ₄ @3DPNN	1М КОН	264 at 10 mA/cm2	79	S3
CoNi/CoFe ₂ O ₄ /NF	1М КОН	290 at 100 mA/cm ²	45	S4
NiCoFe@NiCoFeO NTAs/CFC	1М КОН	201 at 10 mA/cm ²	39	S5
Ni–Fe LDHs	1М КОН	297 at 100 mA/cm ²	60.8	S6
NiCo ₂ O ₄ hollow microcuboids	1 M NaOH	290 at 10 mA/cm ²	53	S7
Wire-like MoS ₂ /rFe- NiCo ₂ O ₄	1M NaOH	270 at 10 mA/cm ² 320 at 100 mA/cm ²	39	S8
NiCo _{2-x} Fe _x O ₄ NBs	1 М КОН	274 at 10 mA/cm ² 290 at 30 mA/cm ²	42	S9
Co ₃ O ₄ /Co-Fe oxide	1 М КОН	297 at 10 mA/cm ²	61	S10
NiCoFe/NF/FeSO ₄	1 М КОН	293 at 100 mA/cm ²	48.3	S11
B-NiCoFe (NiCoFe spinel oxide grown on Fe surface)	1 М КОН	342 at 10 mA/cm ² 500 at 110.5 mA/cm ²	48	S12
Ni-Co ₃ O ₄ NS\NF	1 М КОН	310 at 10 mA/cm ² 390 at 100 mA/cm ²	59.5	S13
FeNi@FeNi	1 М КОН	193 at 10 mA/cm ² 231 at 20 mA/cm ² 306 at 50 mA/cm ²	143.1	S14

Table S4. Comparison of OER performance with previously reported NiCo-based electrocatalysts

Fe-NiCo-MOF/NF	1 М КОН	290 at 50 mA/cm ² 326 at 100 mA/cm ²	96.9	S15
		373 at 200 mA/cm ²		
W _{0.5} Co _{0.4} Fe _{0.1} /NF	1 М КОН	250 at 10 mA/cm ²	32	S16
		310 at 100 mA/cm ²		
$Co_3O_4/NiCo_2O_4/Ni$ foam	0.1 M KOH	320 at 10 mA/cm ²	84	S17
NiO/NiCo ₂ O ₄ nanofibres	1 М КОН	357 at 10 mA/cm ²	130	S18
NiCoFe-LDHs nanosheets	1 M NaOH	288 at 10 mA/cm ²	92	S19
NiCo _{1.75} Fe _{0.25} O ₄ @NiO@NF	1 М КОН	272 at 100 mA/cm ²	54	This
				WOLK
Ni _{0.75} Co ₂ Fe _{0.25} O ₄ @NiO@NF	1М КОН	292 at 100 mA/cm ²	66	This
				WOrk

Figure S1. A comparison of the XPS peaks for N1C12@NiO@NF (blue plots) and N2C22@NiO@NF (red plots).

Figure S2: Comparison of overpotential values of different *electrocatalysts at a current density of* 100 mA/cm^2 .

Figure S3: Cyclic Voltammetry (non-faradaic region, measured at the potential window from 0.932 to 1.132 V (vs RHE)) curves for N1C12@NiO@NF (a) and N2C22@NiO@NF (b) with different scan rates and the relationship between the current density at the potential of 1.035 V vs RHE and scanning rates (c).

References

S1. H-Y.Wang, Y-Y. Hsu, R. Chen, T-S. Chan, H. M. Chen, B. Liu, Adv. Energy Mater., 2015, 5, 1500091.

S2. C. Zhu, S. Fu, D. Du, Y. Lin, Chem. Eur. J., 2016, 22, 4000 – 4007.

S3. C. Chang, L. Zhang, C-W. Hsu, X-F. Chuah, S-Y. Lu, ACS Appl. Mater. Interfaces, 2018, 10, 417–426.

S4. S. Li, S. Sirisomboonchai, A. Yoshida, X. An, X. Hao, A. Abudula, G. Guan, *J. Mater. Chem. A*, 2018, **6**, 19221–19230.

S5. Y. Liu, Y. Ying, L. Fei, Y. Liu, Q. Hu, G. Zhang, S. Y. Pang, W. Lu, C. L. Mak, X. Luo, L. Zhou, M. Wei,
H. Huang, J. Am. Chem. Soc., 2019, 141, 8136–8145.

S6. M. Salmanion, M. M. Najafpour, Inorg. Chem., 2021, 60, 6073-6085.

S7. X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, *Angew. Chem. Int. Ed.*, 2016, **55**, 6290 – 6294.

S8. J. Li, D. Chu, H. Dong, R. D. Baker, R. Jiang, J. Am. Chem. Soc., 2020, 142, 50-54.

S9. Yi. Huang, S. L. Zhnag, X. F. Lu, Z-P. Wu, D. Luan, X. W. (D.). Lou, *Angew. Chem. Int. Ed.*, 2021, **60**, 11841-11846.

S10. X.Wang, Le. Yu, B. Y. Guan, S. Song, X. W. (D.). Lou, Adv. Mater., 2018, 30, 1801211.

S11. H-S. Hu, Y. Li, G. Deng, Y-R. Shao, K-X. Li, C-B.Wang, Y.-Y. Feng, *Inorg. Chem. Front.*, 2021, **8**, 766–776.

S12. J. Xie, S. Cao, L. Gao, F. Lei, P. Hao, B. Tang, Chem. Commun., 2019, 55, 9841-9844.

S13. L. Zeng, K. Zhou, L. Yang, G. Du, L. Liu, W. Zhou, ACS Appl. Energy Mater., 2018, 1, 6279–6287.

S14. K. Huang, R. Dong, C. Wang, W. Li, H. Sun, B. Geng, ACS Sustainable Chem. Eng., 2019, 7, 15073–15079.

S15. T. Sun, S. Lin, Z. Xu, L. Li, CrystEngComm, 2021, 23, 7650–7657.

S16. Y. Pi, Q. Shao, P. Wang, F. Lv, S. Guo, J. Guo, Angew. Chem. Int. Ed., 2017, 56, 4502 – 4506.

S17. M. Yang, W. Lu, R. Jin, X-C. Liu, S. Song, Y. Xing, *ACS Sustainable Chem. Eng.*, 2019, **7**, 12214–12221.

S18. Z. Zhang, X. Liang, J. Li, J. Qian, Y. Liu, S. Yang, Y. Wang, D. Gao, D. Xue, ACS Appl. Mater. Interfaces, 2020, **12**, 21661–21669.

S19. M. Zhang, Y. Liu, B. Liu, Z. Chen, H. Xu, K. Yan, ACS Catal., 2020, 10, 5179-5189.