Supporting Information

Activation in the Rate of Oxygen Release of $Sr_{0.8}Ca_{0.2}FeO_{3-\delta}$ Through Removal of Secondary Surface Species with Thermal Treatment in a CO₂-Free Atmosphere

Giancarlo Luongo, Alexander H. Bork, Paula M. Abdala, Yi-Hsuan Wu, Evgenia Kountoupi, Felix Donat^{*} and Christoph R. Müller^{*}

Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zürich, Switzerland

*Corresponding authors: Dr. Felix Donat, email: <u>donatf@ethz.ch</u>; Prof. Christoph R. Müller, email: <u>muelchri@ethz.ch</u>

Keywords: chemical looping; air separation; oxygen carrier; perovskite; activation

1. Activation in the rate of oxygen release from Sr_{1-x}Ca_xFeO_{3-δ}

Figure S1 – Fitting of the change in oxygen non-stoichiometry $\Delta\delta$ during the (a) reduction and (b) oxidation steps of Sr_{0.8}Ca_{0.2}FeO_{3- δ} at 500 °C in first cycle.

Figure S2 shows the results of 10 redox cycles carried out with SrFeO_{3-δ}, Sr_{0.9}Ca_{0.1}FeO_{3-δ} and Sr_{0.75}Ca_{0.25}FeO_{3-δ} to illustrate that an activation occurs for other compositions of the Sr_{1-x}Ca_xFeO_{3-δ} family. Note that here we focused only on phase pure perovskites, which are obtained when $0 \le x \le 0.25$, as reported in our previous work. ^[1] An increase in the rates of oxygen release was observed for all three samples at 500 °C, with the amount of oxygen released after 10 cycles of ~ 0.80 wt%, ~ 0.90 wt% and ~ 2.02 wt%, for SrFeO_{3-δ}, Sr_{0.9}Ca_{0.1}FeO_{3-δ} and Sr_{0.75}Ca_{0.25}FeO_{3-δ}, respectively. ^[1]

Figure S2 – Redox performance upon cycling. Normalized weight upon redox cycling (40 min reduction in N₂ and 20 min oxidation in air) collected in a TGA at 500 °C for (a) SrFeO_{3- δ}, (b) Sr_{0.9}Ca_{0.1}FeO_{3- δ} and (c) Sr_{0.75}Ca_{0.25}FeO_{3- δ}.

Figure S3 – Influence of different operating conditions on the increase in the rate of oxygen release. Normalized weight of $Sr_{0.8}Ca_{0.2}FeO_{3-\delta}$ upon redox cycling at 500 °C by using (a) different total flowrates (300 mL min⁻¹, 200 mL min⁻¹, 100 mL min⁻¹), (b) different total sample masses (60 mg, 30 mg, 15 mg), (c) different particle sizes (25 – 53 µm, 53 – 106 µm, 106 – 180 µm), (d) 5 % H₂/N₂ reducing atmosphere and (e) by using a shallow 30 µL or a 70 µL crucible.

Figure S4 – The effect of aging at ambient conditions in a closed vial on the increase in the rate of oxygen release. Normalized weight upon redox cycling at 500 °C of the same sample when (a) as synthesized, (b) after aging for 1 week, (c) after aging for additional 2 weeks, (d) after aging for 2 hours after activation in (c), (e) after activation in (d) and aging for another 2 weeks.

Figure S5 – The effect of the temperature on the increase in the rate of oxygen release. Normalized weight upon cycling at (a) 450 °C, (b) 475 °C, (c) 500 °C, (d) 550 °C, (e) 575 °C and (f) 600 °C.

Figure S6 – Normalized weight of Sr_{0.8}Ca_{0.2}FeO_{3- δ} upon one redox cycle followed by exposure to N₂ for 10 h, synthetic air (O₂/N₂) or compressed air (containing small amounts of CO₂), and then nine redox cycles, with 40 min reduction in N₂ and 20 min oxidation in synthetic air or compressed air, at 500 °C.

Cycle number	Fitted parameters, 10 cycles, see Figure 1						
	TRED	а	R ²				
1	5.7872	0.1904	0.98983				
2	5.7872	0.1904	0.99607				
3	5.7872	0.1904	0.99738				
4	5.7872	0.1904	0.99809				
5	5.7872	0.1904	0.99919				
6	5.7872	0.1904	0.99896				
7	5.7872	0.1904	0.99878				
8	5.7872	0.1904	0.99906				
9	5.7872	0.1904	0.99902				
10	5.7872	0.1904	0.99904				

Table S1 – Fitted parameters used for the calculation of the relaxation times of reaction and goodness of the fit for different TGA measurements.

Cycle	Fitted para	meters, As s	ynthesized,	Fitted parameters, 1 week, see			
number	s	ee Figure S4	a		Figure S4b		
	T _{RED}	а	R ²	T _{RED}	а	R ²	
1	10.138	0.1507	0.98558	7.2424	0.21104	0.99772	
2	8.661	0.15862	0.98303	5.6982	0.20187	0.99723	
3	7.7509	0.16844	0.98422	5.411	0.20289	0.99715	
4	7.254	0.1765	0.98572	5.2248	0.20462	0.99702	
5	6.8704	0.18255	0.98637	5.1499	0.20305	0.99759	
6	6.6678	0.18582	0.98976	5.0125	0.20347	0.99772	
7	6.3449	0.19064	0.98988	4.9282	0.20317	0.99771	
8	6.1233	0.19371	0.99122	4.7487	0.20625	0.99674	
9	5.9406	0.19605	0.99231	4.6492	0.20588	0.99702	
10	5.7114	0.19883	0.99294	4.5983	0.20452	0.99734	
11	5.4414	0.20256	0.9918	4.4848	0.20586	0.99646	
12	5.3044	0.20357	0.99271	4.455	0.20527	0.99684	
13	5.1715	0.20333	0.99375	4.3698	0.20605	0.99616	
14	5.0351	0.2053	0.99343	4.3543	0.20365	0.99692	
15	4.8828	0.20748	0.99271	4.3024	0.20411	0.99649	
16	4.7561	0.20846	0.99225	4.1934	0.20555	0.99515	
17	4.7344	0.20793	0.9932	4.2607	0.20397	0.99587	
18	4.5832	0.20943	0.99177	4.2811	0.20347	0.99561	
19	4.4978	0.20907	0.99193	4.1839	0.20408	0.99485	
20	4.4542	0.20794	0.99243	4.0762	0.2041	0.9937	
21	4.3664	0.20741	0.9922	4.0123	0.20394	0.99331	
22	4.2835	0.20795	0.99112	4.0087	0.20156	0.99413	
23	4.2172	0.20736	0.99083	3.93	0.20275	0.99294	
24	4.151	0.20745	0.98994	3.8531	0.20334	0.99131	
25	3.9839	0.21194	0.98433	3.8069	0.20238	0.99117	
26	4.0781	0.20621	0.98972	3.7591	0.20115	0.99123	
27	3.9904	0.20749	0.98768	3.7393	0.19999	0.9908	
28	3.9877	0.20654	0.98752	3.7133	0.19938	0.9909	
29	3.9365	0.2065	0.98665	3.6267	0.20147	0.98798	
30	3.887	0.20654	0.98558	3.5773	0.20122	0.98705	

Cycle	Fitted parameters, 2 weeks, see Figure S4c		Fitted pa	rameters, 2 h Figure S4d	ours, see	
Transer			R ²			R ²
1	14.575	0.2077	0.99055	5.7342	0.22202	0.99759
2	10.363	0.20864	0.99834	4.8843	0.21925	0.99848
3	8.6285	0.21093	0.99836	4.8235	0.21831	0.99842
4	7.8306	0.21102	0.9987	4.7527	0.21749	0.99836
5	7.293	0.21182	0.99882	4.6719	0.21898	0.99845
6	6.8525	0.21331	0.9986	4.6642	0.21753	0.9985
7	6.5602	0.2135	0.99868	4.6363	0.21743	0.99852
8	6.2089	0.21671	0.9979	4.5362	0.21936	0.99854
9	6.159	0.21396	0.99852	4.4964	0.2195	0.99841
10	5.9359	0.21441	0.99831	4.4509	0.21983	0.99829
11	5.7531	0.21638	0.99789	4.4281	0.22025	0.99812
12	5.6083	0.2153	0.99807	4.3957	0.21894	0.99801
13	5.4978	0.21564	0.99787	4.383	0.21857	0.99802
14	5.3346	0.21667	0.99726	4.3174	0.21944	0.9975
15	5.1824	0.21702	0.99703	4.3059	0.2179	0.99757
16	5.099	0.21666	0.99691	4.2783	0.21811	0.99731
17	4.9806	0.21728	0.99641	4.2227	0.21997	0.99644
18	4.9743	0.21519	0.99703	4.2049	0.21962	0.996
19	4.8672	0.2153	0.99654	4.184	0.21926	0.99562
20	4.797	0.21653	0.99569	4.1464	0.21952	0.99496
21	4.7467	0.21579	0.9956	4.1764	0.21672	0.99582
22	4.6958	0.2153	0.99537	4.0851	0.21889	0.99419
23	4.5837	0.21743	0.99375	4.0799	0.21709	0.99453
24	4.5809	0.21533	0.99423	4.0503	0.21687	0.99386
25	4.4867	0.21741	0.99228	3.9986	0.21727	0.99312
26	4.4732	0.21647	0.99235	3.9451	0.2183	0.99168
27	4.4067	0.21738	0.99105	3.8825	0.21883	0.98995
28	4.3398	0.21779	0.98988	3.8612	0.21802	0.99011
29	4.3222	0.21606	0.99027	3.8605	0.2165	0.99015
30	4.2483	0.21687	0.98869	3.8115	0.21743	0.9884

Cycle number	Fitted par	ameters, 2 w Figure S4e	veeks, see
	T _{RED}	а	R ²
1	24.038	0.23307	0.99392
2	12.795	0.2072	0.99787
3	10.364	0.20822	0.99847
4	9.035	0.21028	0.99844
5	8.2775	0.20691	0.99817
6	7.6922	0.21133	0.99859
7	7.2962	0.21119	0.99868
8	6.969	0.21136	0.99859
9	6.6969	0.21154	0.99851
10	6.4747	0.21109	0.99852
11	6.2754	0.21174	0.99822
12	6.0947	0.21193	0.99806
13	5.9445	0.21181	0.99795
14	5.8213	0.2121	0.99772
15	5.703	0.21179	0.99753
16	5.6257	0.21145	0.99745

17	5.6749	0.20698	0.99792
18	5.4312	0.21079	0.9969
19	5.3566	0.21067	0.99664
20	5.2759	0.21016	0.99633
21	5.2232	0.20996	0.99606
22	5.155	0.2098	0.99576
23	5.103	0.20922	0.99541
24	5.0647	0.20919	0.9951
25	5.0003	0.20897	0.9946
26	4.9459	0.20831	0.99435
27	4.9022	0.208	0.99396
28	4.8453	0.20813	0.99318
29	4.7941	0.2077	0.99289
30	4.741	0.20753	0.9922

Cycle number	Fitted parameters, CO ₂ _1%, see Figure 2a			Fitted parameters, CO ₂ _5%, see Figure 2a		
	TRED	а	R ²	TRED	а	R ²
1	15.934	0.077424	0.99658	12.024	0.13328	0.98967
2	11.222	0.079306	0.98905	9.1614	0.14535	0.99022
3	11.004	0.080069	0.99148	8.0088	0.15305	0.98448
4	9.9637	0.080689	0.98897	7.7031	0.15939	0.98726
5	10.158	0.082546	0.99214	7.3681	0.16535	0.98759
6	18.344	0.085848	0.99937	19.646	0.18186	0.99904
7	10.086	0.081742	0.98928	7.4402	0.16644	0.9908
8	9.6944	0.082786	0.98915	6.7818	0.17057	0.99129
9	9.111	0.083428	0.98755	6.5176	0.17333	0.99019
10	8.8739	0.084327	0.98801	6.3721	0.17641	0.98995

Cycle number	Fitted parameters, CO ₂ _10%, see Figure 2a			Fitted parameters, CO ₂ _50%, see Figure 2a		
	TRED	а	R ²	TRED	а	R ²
1	9.7886	0.14222	0.98759	9.7727	0.14441	0.98833
2	8.4754	0.14961	0.9856	8.5107	0.15236	0.98695
3	7.823	0.15841	0.9862	7.8432	0.15979	0.98685
4	7.4474	0.16431	0.98759	8.1446	0.16593	0.99589
5	7.3007	0.16772	0.99005	7.2471	0.17012	0.99226
6	22.854	0.19763	0.99847	5096.5	22.232	0.99324
7	7.242	0.17006	0.98974	7.3896	0.16916	0.9922
8	6.6039	0.17434	0.99078	6.4553	0.17372	0.98981
9	6.4447	0.17496	0.99174	6.2611	0.17699	0.99022
10	6.2994	0.17808	0.99148	6.1565	0.17731	0.99057

Cycle number	Fitted parameters, 450 °C, see Figure S5a						
	T _{RED}	Tox	а	b	R ² , _{RED}	R ² ,ox	
1	22.036	5.8369	0.043112	0.021878	0.99696	0.99555	
2	23.864	6.1412	0.035327	0.023252	0.99586	0.996	
3	23.602	6.2755	0.034173	0.023275	0.99561	0.99671	
4	23.642	6.2036	0.034161	0.023737	0.99435	0.99491	
5	24.217	6.356	0.034292	0.02386	0.99612	0.99617	
6	23.622	6.3161	0.034418	0.023941	0.9946	0.99543	

7	23.887	6.2821	0.034372	0.024182	0.99552	0.99522
8	23.949	6.2503	0.034262	0.024341	0.99506	0.99496
9	23.616	6.4856	0.034035	0.024665	0.99472	0.99624
10	22.697	-	0.0333	-	0.99431	-

Cycle number	Fitted parameters, 475 °C, see Figure S5b						
	TRED	T _{OX}	а	b	R ² , _{RED}	R ² ,ox	
1	20.248	4.6995	0.068775	0.050057	0.9973	0.99684	
2	17.823	4.6442	0.057883	0.052121	0.99612	0.99754	
3	16.857	4.6157	0.057251	0.053061	0.99457	0.997	
4	16.141	4.5951	0.057166	0.053679	0.99359	0.99695	
5	15.982	4.5974	0.05763	0.054336	0.99335	0.9967	
6	16.183	4.5014	0.058433	0.054727	0.9944	0.99628	
7	15.603	4.4788	0.058551	0.055007	0.99337	0.99542	
8	15.541	4.4114	0.059655	0.055518	0.99289	0.99522	
9	15.159	4.3958	0.060542	0.056036	0.99215	0.9951	
10	14.868	-	0.060611	-	0.99209	-	

Cycle number	Fitted parameters, 500 °C, see Figure S5c							
	T _{RED}	T _{OX}	а	b	R ² , _{RED}	R ² ,ox		
1	15.28	2.9481	0.095772	0.085185	0.99482	0.98162		
2	11.858	2.7401	0.09664	0.095022	0.9879	0.97738		
3	10.911	2.4802	0.10475	0.10348	0.9877	0.97376		
4	10.356	2.2335	0.11273	0.11092	0.98851	0.97224		
5	9.7018	2.0676	0.12048	0.11717	0.98792	0.96819		
6	9.2381	1.9252	0.12812	0.12281	0.9878	0.96557		
7	8.8418	1.7653	0.13484	0.12841	0.98838	0.96918		
8	8.4963	1.6496	0.14132	0.13394	0.98896	0.96868		
9	8.1397	1.517	0.14801	0.13898	0.98849	0.97241		
10	7.9161	-	0.15378	-	0.98957	-		

Cycle number	Fitted parameters, 550 °C, see Figure S5d							
	TRED	Тох	а	b	R ² , RED	R ² ,ox		
1	14.336	0.47098	0.19538	0.1952	0.98975	0.99536		
2	3.5546	0.32146	0.17827	0.19851	0.99638	0.99279		
3	2.7054	0.27787	0.18167	0.1885	0.99791	0.99129		
4	2.3724	0.26078	0.18136	0.1756	0.99805	0.98989		
5	2.1702	0.24984	0.18275	0.1628	0.99788	0.98957		
6	2.0367	0.24244	0.18098	0.14992	0.99772	0.98923		
7	1.9205	0.23636	0.18151	0.13749	0.99741	0.98911		
8	1.8373	0.23166	0.17963	0.12602	0.99709	0.9894		
9	1.7618	0.2273	0.17891	0.11496	0.99665	0.98896		
10	1.7004	-	0.17864	-	0.99583	-		

Cycle number	Fitted parameters, 575 °C, see Figure S5e					
	TRED	Тох	а	b	R ² , RED	R ² ,ox
1	5.6079	0.38419	0.18244	0.23916	0.99626	0.95223
2	1.7643	0.33604	0.18627	0.23379	0.99527	0.9492
3	1.49	0.32226	0.18665	0.22326	0.9963	0.94764

4	1.3484	0.3173	0.1894	0.21206	0.99636	0.94788
5	1.268	0.3183	0.18682	0.2016	0.99596	0.94721
6	1.1999	0.30877	0.18663	0.18937	0.99536	0.9485
7	1.15	0.30273	0.18646	0.17775	0.99406	0.94813
8	1.1036	0.29842	0.18569	0.16665	0.99282	0.94861
9	1.0625	0.29573	0.18563	0.15688	0.99083	0.95027
10	1.0315	-	0.18515	-	0.98783	-

Cycle number	Fitted parameters, 600 °C, see Figure S5f					
	TRED	Тох	а	b	R ² , _{RED}	R ² ,ox
1	2.2641	0.30381	0.17752	0.23322	0.963	0.94643
2	1.1136	0.28914	0.17869	0.22365	0.99195	0.94547
3	0.98292	0.28393	0.17906	0.21102	0.99321	0.9457
4	0.90854	0.27805	0.17881	0.19769	0.99304	0.94666
5	0.85258	0.27424	0.17857	0.18493	0.99264	0.94725
6	0.81223	0.26994	0.17839	0.17318	0.991	0.94783
7	0.7775	0.26736	0.17793	0.16182	0.98876	0.94839
8	0.74679	0.264	0.17806	0.15072	0.9851	0.94979
9	0.7231	0.26131	0.17699	0.14066	0.98085	0.95019
10	0.70081	-	0.17716	-	0.97312	-

2. Bulk perovskite structure and changes upon redox cycling

Figure S7 – Full pattern refinement (Rietveld analysis) of Sr_{0.8}Ca_{0.2}FeO_{3-δ} before and after redox cycling (30 redox cycles in a TGA at 500 °C). The calculated lattice parameters were a = 10.906(4) Å, b = 7.674(6) Å and c = 5.472(4) Å for the sample before cycling and a = 10.901(6) Å, b = 7.671(2) Å and c = 5.469(5) Å for the sample after cycling.

Energy (eV)

Figure S8 – Fe K-edge XANES of Sr_{0.8}Ca_{0.2}FeO_{3.5} as synthesized and reduced (after 40 min in N₂ at 500 °C), together with Fe foil and Fe₂O₃ that acted as references. The inset plot on the top left side shows a zoom into the edge position. The inset on the bottom right plots the oxidation state of the materials against the edge positions (determined at half of the normalized intensity ^[2]), considering Fe foil (Fe⁰) and Fe₂O₃ (Fe⁺³) as the respective references. The average valance state of Fe in Sr_{0.8}Ca_{0.2}FeO_{3.5} as synthesized was extrapolated by using a linear relationship and was found to be between +4 and +3 (ca. Fe^{+3.76}), giving an indirect measurement of the initial non-stoichiometry of approximately $\delta = 0.14$.

Figure S9 – Structural change of the perovskite from orthorhombic to cubic upon heating to 500 °C in air. (a) In-situ XRD patterns of Sr_{0.8}Ca_{0.2}FeO_{3- δ} collected at 50 °C and 500 °C. (b) Full pattern refinement (Rietveld analysis) of Sr_{0.8}Ca_{0.2}FeO_{3- δ} at 500 °C. The calculated lattice parameters were a = b = c = 3.898(8) Å. At 50 °C the structure was indexed with an orthorhombic space group, and at 500°C the cubic *Pm*-3*m* space group explained all reflections. The inset in (a) magnifies the difference in the high-order reflections for the patterns collected at 50 °C and 500 °C.

Figure S10 – Evolution of the cell parameter of the perovskite $Sr_{0.8}Ca_{0.2}FeO_{3-\delta}$ with time under N₂ at 500 °C.

Figure S11 – Evolution of (a) the integrated intensity normalized with respect to the maximum observed intensity and (b) peak position of the perovskite (110) and brownmillerite (411) peaks, related to the measurements shown in Figure 4. The yellow vertical line indicates the onset of the phase transition from perovskite to brownmillerite at ~ 4 min.

Figure S12 – Ex-situ studies of the structural evolution of Sr_{0.8}Ca_{0.2}FeO₃₋₅ at different degrees of reduction. (a) Normalized weight upon reduction in N₂ at 500 °C in the TGA. Samples were collected at different times of reduction (1 @0 min, 2 and 2* @1 min, 3 @5 min, 4 @25 min, 5 @60 min) with the corresponding (1 – 5) XRD patterns (collected at room temperature and ambient air) shown in (b), and magnified in (c) in the 20 range 31 – 34 °. The XRD pattern corresponding to point 2* is that of an activated sample (i.e. treatment in synthetic air at 600 °C for 2 h), collected after the same time as point 2. Note that the evolution of the perovskite peak observed in (c) (i.e. at room temperature) is different from the one observed with in-situ XRD measurements at 500 °C (Figure 4). Here, we observe a splitting of the perovskite peak upon reduction, while at 500 °C the perovskite peak only shifts gradually to lower angles, without any splitting. This is because at room temperature the perovskite has an orthorhombic structure, while under operating conditions (500 °C), i.e. the temperature at which in-situ XRD patterns were collected, the perovskite has a cubic structure.

Figure S13 – Change in the peak position of the perovskite peak (110) before the onset of the phase transition from perovskite to brownmillerite and the corresponding amount of oxygen release. (a) In-situ XRD patterns of Sr_{0.8}Ca_{0.2}FeO_{3- $\delta}$} at 500 °C at different pO₂ obtained by using mixtures of air and N₂ (total flow rate 200 mL min⁻¹). The scans were collected 10 min after the change in the gas environment. (b) TGA measurement at 500 °C at different pO₂ obtained by using mixtures of compressed air and N₂ (total flow rate 150 mL min⁻¹). Each pO₂ step was 20 min.

Figure S14 – Textural properties of $Sr_{0.8}Ca_{0.2}FeO_{3-\delta}$. (a) Pore volume distribution and (b) HR-SEM of the as-synthesized sample and after 10 redox cycles at 500 °C.

Sample	Name	Position (eV)	Intensity
Air-tight	Sr3d	133.1	10819
	O1s	531.2	13784
	Fe2p	710.4	9305
	C1s	289	165
CO ₂ -treated	Sr3d	133.1	10824
	O1s	531.3	13805
	Fe2p	710.4	9309
	C1s	289.05	4651
As-synthesized	Sr3d	133.1	10818
	O1s	531.3	13808
	Fe2p	710.4	9310

Table S2 – Position and intensity of the peaks in the Sr 3d, O 1s, Fe 2p and C 1s XPS spectra.

	C1s	289.05	4622
First cycle	Sr3d	133.1	10821
	O1s	531.3	13804
	Fe2p	710.4	9308
	C1s	289.05	4602
Third cycle	Sr3d	133.1	10821
	O1s	531.3	13799
	Fe2p	710.4	9308
	C1s	289.05	4594
Fifth cycle	Sr3d	133.1	10821
	O1s	531.3	13787
	Fe2p	710.4	9306
	C1s	289.05	4588
Tenth cycle	Sr3d	133.1	10819
	O1s	531.3	13786
	Fe2p	710.4	9306
	C1s	289.05	4497

Figure S15 – (a) Fe XPS spectra of the as-synthesized Sr_{0.8}Ca_{0.2}FeO_{3- δ} and after 1, 5 and 10 redox cycles in the TGA. (b) Atomic concentration at the surface of the sample as synthesized and after 1, 5 and 10 redox cycles measured with XPS.

Figure S16 – Decomposition of SrCO₃.Temperature programmed reduction of SrCO₃ heating to 900 °C at 5 °C min⁻¹ in N₂ (150 mL min⁻¹) and held at 900 °C for 30 min. The onset temperature of the decomposition of SrCO₃ is at 760 °C.

Figure S17 – Optical microscope image collected by using 100× optical magnification at 25 °C and corresponding Raman spectra, collected by using 50× optical magnification, of the assynthesized $Sr_{0.8}Ca_{0.2}FeO_{3-\delta}$, ground to fine particles and pelletized.

Figure S18 – (a) Optical microscope image of the as-synthesized and cycled sample collected at 25 °C by using 10x optical magnification; (b) corresponding Raman spectra. The as-synthesized sample was ground to fine particles and pelletized. The sample was heated in the in-situ Raman cell to 700 °C in air (heating rate 10 °C min⁻¹), then redox cycled once in N₂ (40 min) and air (20 min), and cooled down to 25 °C.

Figure S19 – (a) Optical microscope images collected by using 10× optical magnification of: As-synthesized sample at 25 °C; the sample heated to 700 °C in air (heating rate 10 °C min⁻¹), and then redox cycled once in N₂ (40 min) and air (20 min); the sample after exposure at 500 °C to CO₂ for 20 min; (b) corresponding Raman spectra.

References

- [1] Luongo, G., Donat, F., Müller, C. R., *Physical Chemistry Chemical Physics*, **2020**, 22(17), pp.9272-9282.
- [2] Tamai, K., Hosokawa, S., Kato, K., Asakura, H., Teramura, K., Tanaka, T., *Physical Chemistry Chemical Physics*, **2020**, 22(42), pp.24181-24190.