Supporting Information

Active and stable PtP₂-based electrocatalyst solves the phosphate poisoning issue of high temperature fuel cells

Jeong-Hoon Yu,^a Kiran Pal Singh,^a Se-Jun Kim,^b Tong-Hyun Kang,^a Kug-Seung Lee,^c

Hyungjun Kim,^b Stefan Ringe,*,a,e and Jong-Sung Yu*,a,d

^a Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea

^b Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST),

Daejeon, 34141, Republic of Korea

^c Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea

^d Energy Science and Engineering Research Center, DGIST, Daegu 42988, Republic of Korea

^e Department of Chemistry, Korea University, Seoul 02841, Republic of Korea

* Corresponding author

E-mail: sringe@korea.ac.kr (S. Ringe), jsyu@dgist.ac.kr (J.-S. Yu)

Fig. S1 STEM-EDX line profiles across as-prepared PtP₂ nanoparticle: STEM reference images and compositional (Pt and P) profiles of (a) (1:2) PtP₂/C-ASP, (b) (1:4) PtP₂/C-ASP and (c) (1:6) PtP₂/C-ASP.

Fig. S2 Thermo-gravimetric-analysis (TGA) of (a) $PtP_2/C-ASP$ and (b) $PtP_2/C-800$ in O_2 atmosphere.

The observed TGA peaks can be divided into 3 regions: i) oxidation of TOP polymer (~120 to 450 °C) in the PtP₂/C-ASP catalyst and conversion of lattice P into P₂O₅ (~250 to 450 °C) in the PtP₂/C-800 catalyst,^{1,2} ii) oxidation of the ketjen-black-carbon support (450 to 680 °C), and iii) percentage of mass remained after the thermal treatment (<680 °C) in both catalysts. After the thermal oxidation in O₂ atmosphere, around 20% of the total mass remained for both samples in consideration of the stability of the PtP at high temperature. The remained mass can be attributed to the PtPO₄. Therefore, it can be concluded that the prepared catalysts contain mostly PtP₂ catalyst.

Fig. S3 (a) The TEM image of $PtP_2/C-900$ electrocatalyst along with inserted bar graph showing the PtP_2 particle size distribution and average PtP_2 particle size (~6.8 nm) and (b) HR-TEM image of $PtP_2/C-900$ electrocatalyst and inset showing the FFT image of the red squared area.

Fig. S4 XPS profiles of O 1s for (a) Ketjen black, (b) $PtP_2/C-ASP$, (c) $PtP_2/C-800$ and (d) $PtP_2/C-900$.

Fig. S5 (a) XANES and (b) EXAFS profiles of $PtP_2/C-800$ and Pt foil. Fourier-transforms of k^3 -weighted EXAFS spectra (circle) and their best fits (solid line) for (c) $PtP_2/C-800$ and (d) Pt foil.

Fig. S6 The unit cell structures of (a) Pt and (b) PtP_2 , demonstrating the orientation of Pt and P atom in the unit cell and the effective distance between each atom. The effective distance between each atom is calculated from the lattice parameters of the unit cells of Pt and PtP_2 as illustrated in Fig. 1d through the Rietveld refinement.

Fig. S7 TGA analysis of $PtP_2/C-800$ and commercial 20 wt.% Pt/C in O₂ atmosphere. Around 20% of mass remained after the completion of the TGA analysis.

The onset of carbon degradation is observed at \sim 350 °C for Pt/C catalyst and \sim 425 °C for PtP₂/C-800 catalyst. A hump before carbon degradation in PtP₂/C catalyst can be assigned to the oxidation of P. Due to the oxidation of P, the oxidation of carbon has been shifted to the right, indicating the presence of P improves the oxidative stability of carbon.

Fig. S8 XPS deconvolution of C 1s spectra of (a) $PtP_2/C-800$ cathode catalyst and (b) commercial 46.3 wt.% Pt/C-TKK catalyst before and after long-term test of 10K cycles which is carried out in an O₂-saturated 0.1 M HClO₄ electrolyte as shown in Fig. 5.

Fig. S9 CV curves recorded for (a) PtP_2/C -ASP, (b) PtP_2/C -800, (c) PtP_2/C -900, and (d) commercial 46.3 wt.% Pt/C-TKK in O₂-saturated 0.1M HClO₄ and 0.1 M HClO₄ + 0.1 M H₃PO₄ electrolytes, respectively.

Fig. S10 Mass transport-corrected Tafel plots obtained from LSV curves for (a) $PtP_2/C-800$, and (b) Pt/C-TKK in O₂-saturated 0.1 M HClO₄ (black line) and 0.1 M HClO₄ + 0.1 M H₃PO₄ (red line) electrolytes, respectively.

Fig. S11 EIS results for PtP_2/C -800 and Pt/C-TKK at a constant current density of 200 mA/cm² before and after the 30k ADT in HT-PEMFC as shown in Fig. 9. EIS were conducted at 1.5 bar O₂ backpressure and 180 °C cell temperature.

Fig. S12 HR-TEM analysis of (a) and (b) $PtP_2/C-800$ and (c) and (d) commercial 46.3 wt.% Pt/C-TKK before and after 30k ADT, respectively in HT-PEMFC as shown in Fig. 9. (Inset) shows the particle size distribution histogram for each catalyst before and after the durability test.

Table S1 Physical and electrochemical properties of the prepared PtP_2/C catalysts and commercial Pt/C-TKK catalyst.

Sr.	Sample	BET	Pt	Pt	Mass-normalized	Particle	Crystallite
No.	Name	surface	composition	composition	electrochemical	Size nm	Size nm
		area	(ICP)	(XPS)	Surface area	(TEM)	(XRD)
		(m^{2}/g)			$(m^2 g_{Pt}^{-1})$		
1	Pt/C-TKK	368	46.3%	46%	53	4.1	4.5
2	PtP ₂ /C-ASP	650	19.7 %	20.7%	47	2.8	
3	PtP ₂ /C-800	575	20.4%	20.1%	52	3.9	3.8
4	PtP ₂ /C-900	430	20.1%	19.4%	48	6.8	10.5

Sample	C 1s (at%)	P 2p (at%)	O 1s (at%)
Ketjen black	97.24	0.0	2.76
PtP ₂ /C-ASP	73.94	5.74	20.32
PtP ₂ /C-800	83.87	4.43	11.7
PtP ₂ /C-900	92.85	3.82	3.33

Table S2 Atomic percentage of C, P, and O determined by XPS survey scans of Ketjen black and PtP₂-based catalysts.

Sample	Path	Ν	R (Å)	σ^2 (Å ²)	R-factor (%)
PtP ₂ /C-800	Pt-P	3.8 ± 0.7	2.374 ± 0.015	0.003 ± 0.001	
	Pt-P	3.3 ± 1.5	3.580 ± 0.029	0.005 ± 0.001	
	Pt-Pt	12.9 ± 2.8	4.055 ± 0.036	0.007 ± 0.003	
	Pt-P	1.8 ± 1.3	4.728 ± 0.048	0.011 ± 0.003	0.8
	Pt-Pt	2.3 ± 1.2	2.751 ± 0.025	0.005 ± 0.001	
	Pt-Pt	4.4 ± 1.2	3.821 ± 0.030	0.007 ± 0.003	
	Pt-Pt	1.4 ± 0.5	4.957 ± 0.039	0.010 ± 0.004	
Pt foil	Pt-Pt	11.0 ± 0.8	2.767 ± 0.003	0.004 ± 0.001	
	Pt-Pt	4.6 ± 2.3	3.902 ± 0.013	0.005 ± 0.003	1.1
	Pt-Pt	17.5 ± 6.6	4.821 ± 0.011	0.007 ± 0.002	

Table S3 Fourier transformed EXAFS fitting parameters for $PtP_2/C-800$ and Pt foil. (N = coordination number, R = interatomic distance, σ^2 = Debye-Waller factor (bond disorder), R-Factor = a measure of the quality of EXASFS fit)

Table S4 Theoretical ORR overpotentials. The table shows the adsorption energies (before zeropoint energy and free energy corrections) in eV for the key reaction intermediates of ORR as obtained from an HSE06/DFT calculations and the estimated theoretical, thermodynamic overpotentials for ORR to H₂O on (111) facets of Pt, Pt-terminated PtP₂ (^tPt-PtP₂) and Pterminated PtP₂ and oxidized PtP₂, in both cases at a P-defect site.

	$\Delta E_{\rm ads}~(*\rm OOH)$	$\Delta E_{\rm ads}~(*{\rm O})$	$\Delta E_{\rm ads}~(*\rm OH)$	η (H ₂ O)
	(eV)	(eV)	(eV)	(V)
Pt	3.79	1.26	0.69	0.79
^t Pt-PtP ₂	3.49	1.07	0.37	1.52
^t P,P _{def} -PtP ₂	4.70	2.64	0.88	0.60
^t P,P _{def} -PtP ₂ O ₅	3.72	1.67	0.20	1.28

Notes and references

- S. E. Habas, F. G. Baddour, D. A. Ruddy, C. P. Nash, J. Wang, M. Pan, J. E. Hensley and J. A. Schaidle, *Chem. Mater.*, 2015, **27**, 7580-7592.
- (2) A.R.J. Kucernak, K.F. Fahy and V. N. N. Sundaram, *Catalysis Today*, 2016, **262**, 48-56.