Supplementary Material

A 3D multifunctional host anode from commercial carbon cloth for lithium metal batteries

Fang Cheng^{a, c}, Xiaoping Yang^{a, c}, Ou Ka^{b, c}, Lang Wen^{b, c}, Xiaoqu Wang^{b, c}, Wen Lu^{a, b, c *}

^a College of Chemical Science and Engineering, Yunnan University, Kunming 650091, China

^b School of Materials and Energy, Yunnan University, Kunming 650091, China

^c Institute of Energy Storage Technologies, Yunnan University, Kunming 650091, China

*Corresponding author

E-mail address: wenlu@ynu.edu.cn

Figure S1. EDS mapping images of (a) CC, (b) NCC, and (c) KNCC.

Figure S2. (a) Original XPS survey spectra of various materials. N 1s XPS spectra of (b) CC, (c) NCC, and (d) KNCC.

Figure S3. (a, c, e, g) Li 1s and (b, d, f, h) O 1s XPS spectra of various anodes retrieved from their corresponding half cells after one initial discharge/charge cycle at a current density of 2

mA cm⁻² with a discharge capacity of 2 mAh cm⁻². (a, b) Cu. (c, d) CC. (e, f) NCC. (g, h) KNCC.

Figure S4. SEM images of various anodes retrieved from their corresponding half cells after cycled at a current density of 2 mA cm⁻² with a discharge capacity of 2 mAh cm⁻² for (a, c, e, g) 100 cycles and (b, d, f, h) 200 cycles. (a, b) Cu. (c, d) CC. (e, f) NCC. (g, h) KNCC.

Figure S5. Charge/discharge profiles of full cells with various anodes at different currents of (a) 0.1 C, (b) 1 C, (c) 5 C, and (d) 10 C.

Figure S6. Charge/discharge profiles upon cycling at 1 C of full cells with various anodes of (a) Cu, (b) CC, (c) NCC, and (d) KNCC.

Figure S7. (a) Cycling performance and (b) charge/discharge profiles upon cycling at 1 C of a full cell incorporating a conventional Li metal anode.

	Specific	Total pore	Micropore	Mesopore	Macropore
Material	surface area	volume	volume	volume	volume
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$
CC	10.48	0.0130	0	0.0113	0.0017
NCC	10.81	0.0177	0	0.0157	0.0020
KNCC	18.71	0.0335	0	0.0310	0.0024

Table S1. BET specific surface areas and DFT pore volumes of various materials.

Matarial	С	О	Ν
Material	(atom.%)	(atom.%)	(atom.%)
CC	83.59	16.12	0.29
NCC	87.93	6.46	5.61
KNCC	87.86	6.82	5.32

 Table S2. Contents of different elements of various materials.

Motorial	Pyridinic N	Pyrrolic N	Quaternary N
Material	(atom.%)	(atom.%)	(atom.%)
CC	4.96	17.95	77.09
NCC	28.50	33.42	38.08
KNCC	27.53	42.22	30.25

Table S3. Distributions of different types of doped nitrogen of various materials.

Matarial	Overall Li binding energy	
	(eV)	
CC	-48.53	
NCC	-55.49	
KNCC	-55.73	

 Table S4. Overall Li binding energies of various materials.

Overall Li binding energy of a material is defined as the sum of the binding energies of its 100 atoms with Li according to:

$$E_0 = \sum C_x * A_x * E_x$$

where E_O is overall Li binding energy per 100 atoms of the material, C_x is the content of a specific element, A_x is the atomic ratio of a specific type of an element (for carbon, $A_x = 100\%$; for nitrogen, A_x refers to the atomic ratios of pyridinic N, pyrrolic N, and quaternary N, respectively, in Table S3), E_x is binding energy of Li with a specific element. According to a previous report [1], the binding energies of Li with carbon, quaternary N, pyridinic N, and pyrrolic N were -0.579 eV, -0.183 eV, -1.003 eV, and -1.379 eV, respectively, which were used for the calculation of E_O values of various materials in the present work.

Anada	First plateau		Second plateau	
Anode	Potential	Length	Potential	Length
	(V, vs. Li/Li ⁺)	(mAh cm ⁻²)	(V, vs. Li/Li ⁺)	(mAh cm ⁻²)
Cu	0.9551	0.0022	0.0827	0.0061
CC	1.3136	0.0240	0.7433	0.1313
NCC	1.4840	0.0400	0.7507	0.2010
KNCC	1.4950	0.0416	0.7697	0.2521

Table S5. Potential plateaus during the SEI formation of various anodes in half cells.

Current density: 2 mA cm⁻².

E-11 - 11	Charge capacity	Discharge capacity	ICE
Full cell	$(mAh g^{-1})$	$(mAh g^{-1})$	(%)
LFP Cu	163.4	85.3	52.2
LFP CC	166.9	135.5	81.2
LFP NCC	166.0	136.3	82.1
LFP KNCC	165.7	136.9	82.6

 Table S6. Initial charge/discharge performances of full cells with various anodes.

Current: 0.1 C. Cut-off voltage: $2.0 \sim 4.0$ V.

References

 Kim, M. S.; Ryu, J.-H.; Deepika; Lim, Y. R.; Nah, I. W.; Lee, K.-R.; Archer, L. A.; Il Cho, W. Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. *Nat Energy* 2018, 3, 889-898.