Supporting information

Surface reconstruction on $Ni_2P@CC$ to form an ultrathin layer of $Ni(OH)_2$ for enhancing capture and catalytic conversion of polysulfides in lithium-sulfur batteries

Lin Peng ^{a, b}, Meixiu Qu ^{a, b}, Rui Sun ^{a, b}, Weiwei Yang ^{a, b}, Zhenhua Wang ^b, Wang Sun ^b, Yu Bai ^{a, b, *}

^a Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, PR China.

^b Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing,100081, PR China.

*Corresponding author: E-mail: yubaiit@163.com

Fig. S1. SEM image of Ni₂P@CC (Insert is the magnified SEM image of Ni₂P@CC).

Fig. S2. TEM image of Ni₂P.

Fig. S3. TEM image of Ni(OH)₂-Ni₂P.

Fig. S4. HAADF-STEM image of Ni(OH)₂-Ni₂P@CC and the corresponding elemental mappings of overlap, O, P and Ni.

Fig. S5. HRTEM image of Ni₂P.

Fig. S6. The O 1s XPS spectrum of Ni(OH)₂-Ni₂P@CC.

Fig. S7. TGA curve of S/Ni(OH)₂-Ni₂P@CC with a sulfur loading of 2.20mg cm⁻².

Fig. S8. XRD patterns of S/Ni(OH)2-Ni2P@CC, S/Ni2P@CC and S/CC.

Fig. S9. SEM image and corresponding elemental mappings of S/Ni(OH)₂-Ni₂P@CC.

Fig. S10. CV curves of (a) S/Ni(OH)₂-Ni₂P@CC-based cell, (b) S/Ni₂P@CC-based cell

and (c) S/CC-based cell at scan rates of 0.1-0.5 mV s⁻¹.

Fig. S11. (a) anodic oxidation process (peak A: $Li_2S/Li_2S_2 \rightarrow S_8$). (b) first cathodic reduction process (peak $C_1: S_8 \rightarrow Li_2S_x$, $4 \le x \le 6$). and (c) second cathodic reduction process (peak $C_2: Li_2S_x \rightarrow Li_2S/Li_2S_2$, $4 \le x \le 6$) vs the square root of the scan rates.

Fig. S12. Charge-discharge profiles of (a) $S/Ni(OH)_2-Ni_2P@CC$ -based cell, (b)

S/Ni₂P@CC-based cell and (c) S/CC-based cell at different current density.

Fig. S13. SEM image of $S/Ni(OH)_2$ -Ni₂P@CC cathode at fully charged state after 200

cycles at 1 C.

Fig. S14. TGA curve of S/Ni(OH)₂-Ni₂P@CC with a high sulfur loading of 11.10 mg cm⁻².

Fig. S15. Cycling performance of S/Ni(OH)₂-Ni₂P@CC-based cell at 0.1 C even with high sulfur loading (11.10 mg cm⁻²).

Fig. S16. Cycling performance of S/Ni(OH)₂-Ni₂P@CC-based cell with a sulfur loading of 5.90 mg cm⁻² under the E/S = 7 μ L_E mg⁻¹_S condition.

Fig. S17. The optimized adsorption configuration of LiPSs (Li₂S₆, Li₂S₄, Li₂S₂, and

 Li_2S) adsorbed on the surface of $Ni(OH)_2$.

Fig. S18. The optimized adsorption configuration of LiPSs (Li_2S_6 , Li_2S_4 , Li_2S_2 , and Li_2S)

adsorbed on the surface of Ni₂P.

Fig. S19. The charge density difference plots of $Ni(OH)_2$ and Ni_2P after binding with Li_2S_4 .

Fig. S20. The charge density difference plots of $Ni(OH)_2$ and Ni_2P after binding with Li_2S .

Electrode	D_{Li} +(cm ² s ⁻¹)				
Electrode	Peak A	Peak C ₁	Peak C ₂		
S/Ni(OH)2-Ni2P@CC	2.70×10 ⁻⁷	4.50×10 ⁻⁸	7.54×10 ⁻⁸		
S/Ni ₂ P@CC	8.13×10 ⁻⁸	1.24×10 ⁻⁸	1.88×10 ⁻⁸		
S/CC	4.74×10 ⁻⁸	6.97×10 ⁻⁹	8.26×10 ⁻⁹		

Table S1. Comparisons of the D_{Li^+} of S/Ni(OH)₂-Ni₂P@CC, S/Ni₂P@CC and S/CC based cells.

	Electrode	$R_{ m e}\left(\Omega ight)$	$R_{ m g}\left(\Omega ight)$	$R_{ m ct}\left(\Omega ight)$	
before cycling	S/Ni(OH)2-Ni2P@CC	2.61	-	22.20	
	S/Ni ₂ P@CC	2.39	-	50.00	
	S/CC	2.63	-	76.90	
after cycling	S/Ni(OH)2-Ni2P@CC	3.65	2.28	4.89	
	S/Ni ₂ P@CC	3.26	3.36	10.23	
	S/CC	2.67	4.11	15.73	

Table S2. The EIS results of S/Ni(OH)₂-Ni₂P@CC, S/Ni₂P@CC and S/CC based cells before and after cycling.

Electrode	Sulfur loading (mg cm ⁻²)	E/S ratio (µL mg ⁻¹)	Rate	Areal capacity (mAh cm ⁻²)	Ref
S/Ni(OH)2-Ni2P@CC	5.9	7.0	0.1 C	5.28	This work
Co/CNT@GF-S	5.1	15.0	0.1 C	4.93	1
CC@CS@HPP/S	5.6	10.0	0.1 C	5.10	2
S-C@MoS ₂	4.0	10.0	0.1 C	3.30	3
VSe ₂ -VG@CC/S	5.5	8.4	0.1 C	4.10	4
Co-NbN/rGO/S	5.6	8.0	0.1 C	3.92	5
BTO-MS-BPC/S	4.5	8.0	0.1C	3.93	6
S-Ni ₂ Co@rGO	4.0	6.0	0.1 C	4.53	7
3DOM NC@V-ZnO/S	5.8	4.4	0.2 C	4.40	8

Table S3. The electrochemical performance comparison of the $S/Ni(OH)_2-Ni_2P@CC-$ based cell with other articles.

Reference

- 1. Y. Xie, J. Ao, L. Zhang, Y. Shao, H. Zhang, S. Cheng and X. Wang, *Chem. Eng. J.*, 2023, **451**, 139017.
- 2. Z. Ye, Y. Jiang, L. Li, F. Wu and R. Chen, Adv. Mater., 2020, 32, 2002168.
- 3. Q. Wu, Z. Yao, X. Zhou, J. Xu, F. Cao and C. Li, Acs Nano, 2020, 14, 3365-3377.
- 4. H. Ci, J. Cai, H. Ma, Z. Shi, G. Cui, M. Wang, J. Jin, N. Wei, C. Lu, W. Zhao, J. Sun and Z. Liu, ACS Nano, 2020, 14, 11929-11938.
- W. Ge, L. Wang, C. Li, C. Wang, D. Wang, Y. Qian and L. Xu, J. Mater. Chem. A., 2020, 8, 6276-6282.
- C. Chang, S. Di, G. Gao, B. Zhai, S. Chen, S. Wang, X. Liu and L. Li, *Chem. Eng. J.*, 2022, 435, 135031.
- G. Li, W. Qiu, W. Gao, Y. Zhu, X. Zhang, H. Li, Y. Zhang, X. Wang and Z. Chen, *Adv. Funct. Mater.*, 2022, **32**, 2202853.
- 8. X. Zhao, Y. Guan, X. Du, G. Liu, J. Li and G. Li, Chem. Eng. J., 2022, 431, 134242.