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Supplementary Note 1. DFT calculation methods.

The optimization of the ground-state geometry for BP4Ac and BP2Ac molecules were performed with 

B3LYP functional and 6-31g(d,p) basis set using Gaussian09 package. The analysis of electrostatic 

potential (ESP) was performed within Multiwfn program. [1,2] The isosurface of van der Waals (vdW) 

surface was set as 0.001 e/bohr3. The electrostatic potential involved in the analyses was evaluated by 

Multiwfn based on the highly effective algorithm proposed in Ref. [3].
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Supplementary Note S2. Trap Density of States Analysis.

The distribution of trap density of states (tDOS) can be deduced from the angle frequency dependent 

capacitance measurement by the equation: 
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where Vbi is the built-in potential, q is the element charge, W is the depletion width, ω is the applied 

angular frequency,  is the Boltzmann's constant, T is the temperature and C is the capacitance of the 𝑘𝐵

layer. In addition, voltage dependent capacitance measurement was applied to get a relationship 

between Vbi and W. Also, the applied angular frequency correlates with energy demarcation because trap 

states below the energy will attract or emit charges under this angular frequency. The correlation is 

given in the equation as follows: 
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where ω0 is the attempt-to-escape frequency. According to these relationships, we finally reckoned the 

tDOS curves.
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Supplementary Note S3. Solution Absorption Test.

To understand the inhibitory effect of these two acidic molecules on Sn2+ oxidation at their optimal 

concentrations, we tested their corresponding UV-vis absorption spectra at intervals in air. The different 

acidic molecules were dissolved in N, N-dimethylformamide (DMF) at their optimal concentrations and 

then added to the cuvette, followed by 50 μL of perovskite precursor solution to avoid saturation of the 

detector. Finally, the solution is monitored at intervals for its absorption signal. The absorbance 

spectrograms were measured through UV–vis spectrophotometer (PerkinElmer Lambda 750).
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Supplementary Note S4. The Detailed Procedures for Some Important characterizations.

1. For the oxidation resistance of the precursor solution, fresh precursor solutions with and without 

different additives were prepared, and then perovskite films were prepared by these fresh precursor 

solution and the area ratio of Sn4+/Sn2+ on the surface of perovskite film was analyzed by XPS. The 

fresh precursor solution was then placed in the glove box for two weeks, and perovskite films were 

prepared by aging solutions and Sn4+ content on the film surface was measured. Then the increment 

of Sn4+/Sn2+ between two weeks before and two weeks after was observed to determine the 

antioxidant ability under different pH conditions.

2. For liquid-state 1H nuclear magnetic resonance (1H-NMR) characterization, we prepared BP2Ac-

containing deuterated dimethyl sulfoxide reagent(DMSO-d6) and BP4Ac-containing deuterated 

dimethyl sulfoxide reagent(DMSO-d6). In addition, we verify the formation of hydrogen bonds by 

adding SnI2 to a deuterated DMSO reagent containing two additives. 1H NMR spectras were 

measured by utilizing the JNM-ECZ400S/L1 with a frequency of 400 MHz.

3. For Depth-profiling XPS characterization, We prepared perovskite films containing with/without 

different additives and placed them in the air for 20 min before testing to observe the antioxidant 

capacity of different films. And the depth-dependent XPS analyses were measured at the Jiangsu 

Jicui Photoelectric Test Center.
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Figure S1. Schematic illustration of inverted device structure.
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Figure S2. X-ray photoelectron spectroscopy (XPS) of Sn 3d core levels spectra on the perovskite films.
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Figure S3. The redox property of Sn2+ evaluated from its standard reduction potential (E0) in the alkali 
or acid medium.
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Figure S4. Sn2+ and Sn4+ signals obtained from XPS spectra of Sn 3d for perovskite films fabricated 
with fresh precursor solutions at different pH values a) pH=5.06, b) pH=4.62, c) pH=4.38 and d) 
pH=3.95, respectively.
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Figure S5. Sn2+ and Sn4+ signals obtained from XPS spectra of Sn 3d for perovskite films fabricated with precursor solutions placed in a glove box for two 
weeks at different pH values a,b) pH=5.06, c,d) pH=4.62, e,f) pH=4.38 and g,h) pH=3.95, respectively.
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Figure S6. XPS spectra of Sn 3d for perovskite films w/o and with different additives.
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Figure S7. XPS curves of the pristine perovskite film at different etching times. From a) to g), a) is the fresh sample and b) stands for the first 
etching and g) represents the 6th etching result. For each etching process, the duration is 5 seconds.
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Figure S8. XPS curves of the target-BP2Ac perovskite film at different etching times. The sequence and etching time for this sample are identical 
with the pristine sample shown in Figure S7.
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Figure S9. XPS curves of the target-BP4Ac perovskite film at different etching times. The sequence and etching time for this sample are identical 
with the pristine sample shown in Figure S7.
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Figure S10. Top-view SEM images of the perovskite films without and with different additives.
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Figure S11. The 1H-NMR results for a) BP2Ac solution and b) BP2Ac + SnI2 solution dissolved in C2D6OS.
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Figure S12. The 1H-NMR results for a) BP4Ac solution and b) BP4Ac + SnI2 solution dissolved in C2D6OS.
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Figure S13. X-ray photoelectron spectroscopy (XPS) of I 3d core levels spectra on the 
perovskite films.
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Figure S14. XRD pattern of perovskite films without or with different additives (# are on behalf of the peaks of FTO, ♦ indicate the diffraction 
peaks of perovskite and * means diffraction peaks connected with SnI4 ).
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Figure S15. UV-vis absorption spectra and the bandgap (inside) of perovskite films without 
and with different additives. 
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Figure S16. a,b,c) The valence band edges and cutoff regions of UPS spectra, d) The 
schematic energy-level alignment of Pristine, Target-BP2Ac and Target-BP4Ac films.
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Table S1. The pH values of BP2Ac solutions at different concentrations.

Concentration 0 mg/mL 0.5 mg/mL 1 mg/mL 1.5 mg/mL

BP2Ac 5.06 4.62 4.38 3.95

Table S2. Photovoltaic parameters of devices with different concentrations of BP2Ac.

Device VOC (V) JSC (mA/cm2) FF (%) PCE (%)

Pristine 0.78 14.51 60.7 6.87

0.5 mg/mL 0.85 14.99 69.6 8.87

1.0 mg/mL 0.83 13.65 67.0 7.59

1.5 mg/mL 0.80 13.48 62.7 6.76

Table S3. Photovoltaic parameters of devices with different concentrations of BP4Ac.

Device VOC (V) JSC (mA/cm2) FF (%) PCE (%)

Pristine 0.78 14.40 60.1 6.75

0.05 mg/mL 0.84 15.09 69.1 8.76

0.1 mg/mL 0.85 16.64 73.2 10.35

0.2 mg/mL 0.80 13. 48 56.0 6.04


