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Calculation of the Lorenz number (L) and effective mass (m*)

For a degenerate semiconductor like SnTe, L and m* can be approximatively calculated by the single parabolic 

band (SPB) model.1−4

The value of L is generally related to the scattering factors (r) as well as the reduced Fermi energy (), and m* can 

be obtained by a relation with Hall carrier concentration (n). Here, acoustic phonon scattering is considered to be 

the prime scattering mechanism (r=-1/2), and  can be deduced by (1), (2) and (3) below:
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Therefore, L and m*can be computed as follows:
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Where the kB, e, Ef, T, Fx(η), RH and h is the Boltzmann constant, the electron charge, the Fermi energy, the absolute 

temperature, the Fermi integrals, the Hall coefficient and the Plank’s constant, respectively.



Fig. S1 XPS spectra of the SnTe-5% CuSbSe2 sample: (a) the total survey XPS spectrum; (b) high-resolution Cu 2p XPS 

spectrum; (c) high-resolution Sb 3d XPS spectrum; (d) high-resolution Se 3d XPS spectrum.

Fig. S2 SEM micromorphology of SnTe-x% CuSbSe2 (x=0, 5, 8): (a-c) BSE images of the SnTe (a), SnTe-5% CuSbSe2 (b), and 

SnTe-8% CuSbSe2 (c) samples. The blue arrows indicate the positions of Cu-based nanoprecipitates; (d-h) element mapping 

images of Sn, Te, Cu, Sb and Se for the SnTe-5% CuSbSe2 sample.
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Fig. S3 (a) Low resolution TEM images for the pristine SnTe. (b) High resolution TEM (HR-TEM) image of the marked square 

in (a). (c-d) IFFT of the selected region in (b).

Fig. S4 The calculated Lorenz number (L) as a function of temperature for SnTe-x% CuSbSe2 (x=0, 3, 5, 8, 11).


