Supporting information

# Highly Efficient Photocatalytic Formic Acid Decomposition to Syngas under Visible Light using CdS Nanorods Integrated with Crystalline W<sub>2</sub>N<sub>3</sub> Nanosheets

Taotao Wang, <sup>a,b</sup> Muqing Chen, \*a Jinbao Wu, <sup>b</sup> Pingwu Du\*<sup>b,c</sup>

<sup>a</sup> School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong Province, 523808, P. R. China.

- <sup>b</sup> Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China.
- <sup>c</sup>National Synchrotron Radiation Laboratory, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui Province, 230029, P. R. China

\*Corresponding author: <u>mqchen@ustc.edu.cn; dupingwu@ustc.edu.cn</u>

Tel/Fax: 86-551-63606207

## **Experimental Methods**

# Materials

Ethylene diamine (C<sub>2</sub>H<sub>8</sub>N<sub>2</sub>, 99.0%), thiourea (CH<sub>4</sub>N<sub>2</sub>S, 99.0%), cadmium chloride hemipentahydrate (CdCl<sub>2</sub>·2.5H<sub>2</sub>O, 99.0%), sodium tungstate dihydrate, PVP (K-30), acetic acid (C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>, 99.0%), formic acid (HCOOH, 98%), and sodium hydroxide (NaOH, 96.0%) were purchased from Alfa-Aesar, Aldrich, or sinopharm chemical reagent Co.,Ltd and used without further purification. Millipore water (resistivity: ~18 MΩ cm) was used when needed.

## Synthesis of CdS nanorods

CdS nanorods were synthesized by referring to a previous report of our group. First, 4.62 g (10.125 mmol)  $CdCl_2 \cdot 2.5H_2O$  and 4.62 g (30.375 mmol) thiourea ( $CH_4N_2S$ ) were added into 60 mL ethylene diamine. The mixed solution was transferred into a 100 mL Teflon-lined autoclave. Then the autoclave was sealed and maintained at 160 °C for 48 h. After cooling down to room temperature, centrifugation was used to collect the yellow precipitate, followed by washing with DI water and ethanol to remove organic residues. The final product was then dried at 60 °C overnight.

## Synthesis of W<sub>2</sub>N<sub>3</sub> nanosheets

 $W_2N_3$  nanosheets were synthesized by a simple hydrothermal method and hightemperature calcination in an ammonia atmosphere. First, 330 mg (1 mmol) sodium tungstate dihydrate and 50 mg PVP were added into a mixture of 1 mL acetic acid and 6 mL deionized water. The obtained solution was stirred for 10 min and sonicated for 20 min, and then transferred to a Teflon-lined autoclave. The autoclave was sealed and heated at 200°C for 8 h. The obtained white precipitate was washed with DI water and ethanol several times by centrifugation and dried at 60 °C overnight. Then the powder was placed in a quartz boat and transferred to a tubular furnace. The furnace was heated to 700 °C with a rate of 2 °C/min in an ammonia atmosphere for 3 h and cooled down naturally. The white powder turned black and  $W_2N_3$  nanosheets was successfully synthesized.

# Synthesis of CdS/W<sub>2</sub>N<sub>3</sub> photocatalysts

Two steps of grinding and calcining were used to synthesis the composite

CdS/W<sub>2</sub>N<sub>3</sub> photocatalysts. In the first step, 95 mg CdS and 5 mg W<sub>2</sub>N<sub>3</sub> were added into 30 mL ethanol with stirring for 30 min and sonicating for 10 min. After drying under N<sub>2</sub>, the mixture was ground for 20 min. In the second step, the obtained powder was calcined under argon at 300 °C for 1 h with a heating rate of 5 °C/min. Finally, the composite CdS/W<sub>2</sub>N<sub>3</sub> (5 wt%) photocatalysts were obtained and kept in a centrifuge tube for further tests. CdS/W<sub>2</sub>N<sub>3</sub> photocatalysts with different W<sub>2</sub>N<sub>3</sub> weight percentages (0.5, 1, 3, and 10 wt%) were also synthesized by the same method.

# Characterization

The scanning electron microscopy (SEM) images of all the samples were acquired using a Zeiss GeminiSEM 500. A FEI Talos F200X electron microscope was used to obtained transmission electron microscopy (TEM) images and energy-dispersive X-ray microscopy (EDX) mappings at an acceleration voltage of 200 kV. A D/max-TTR III was used to record X-ray diffraction (XRD) patterns at a scanning rate of 10° min<sup>-1</sup> from 10° to 80° (2θ). Optical absorption properties of all the samples were measured over a SOLID 3700 UV–vis spectrometer. X-ray photoelectron spectroscopy (XPS) measurements were carried out on an ESCALAB 250 X-ray photoelectron spectrometer. The steady-state photoluminescence (PL) spectra were measured on a Perkin-Elmer LS 55 fluorescence spectrometer with an excitation wavelength of 405 nm.

## **Photocatalytic FA Decomposition**

The photocatalytic activity tests of FA decomposition were carried out in a 50 mL round bottom flask at ambient temperature. The visible light irradiation was provided by a 300 W Xe lamp equipped with a UV cutoff filter ( $\lambda > 420$  nm). The typical photocatalytic solution was prepared by dispersing 2 mg photocatalysts in 20 mL mixture of FA and DI water. FA concentration and pH of the solution were adjusted by adding different amounts of FA and NaOH. Before the reaction, the obtained suspension was sonicated and then bubbled with high-purity nitrogen for 20 min to remove the air. The generated gases were determined by gas chromatography (GC-1690, Ar as a carrier gas) equipped with a thermal conductivity detector (TCD). The apparent quantum yield (AQY) was measured using monochromatic 420 nm light.

AQY was calculated using the following equation:

AQY (%) =  $\frac{\text{number of reacted electrons}}{\text{number of incident photons}} \times 100$ 

$$= \frac{\text{number of evolved H}_2\text{molecules} \times 2}{\text{number of incident photons}} \times 100 \quad (1)$$

## **Photoelectrochemical measurements**

All the photoelectrochemical measurements were performed using a the conventional three-electrode cell with a Pt wire counter electrode, an Ag/AgCl reference electrode, and the photocatalyst-coated FTO as the working electrode. The electrolyte was 0.5 M Na<sub>2</sub>SO<sub>4</sub> solution. A CHI 660E electrochemical workstation (CH Instrument Inc., Shanghai) was used to record the electrochemical data. The illumination was provided by a 300 W Xe lamp equipped with a UV cutoff filter ( $\lambda > 420$  nm). The ethanol suspension of CdS/W<sub>2</sub>N<sub>3</sub> photocatalysts was prepared by adding 2 mg samples into 1 mL ethanol. After being sonicated, the suspension (100 µL) was dropped onto the surface of FTO. The CdS/W<sub>2</sub>N<sub>3</sub> working electrode was obtained after drying at ambient temperature. The CdS working electrode for comparison was prepared by the same way.



Fig. S1. TEM images of (a) CdS nanorods and (b)  $\mathrm{W_2N_3}$  nanosheets.



**Fig. S2.** Plots of  $(\alpha h \nu)^2$  vs photo energy.



Fig. S3. Diffuse reflectance UV-vis spectra of  $W_2N_3$  nanosheets.



Fig. S4. Comparison of XPS spectra for CdS and 5 wt%  $CdS/W_2N_3$ . High-resolution XPS spectra of (a) Cd 3d and (b) S 2p.



Fig. S5. Photocatalytic  $H_2$  and CO evolution of CdS nanorods in 6 M FA aqueous solution using 2 mg photocatalyst at pH 3.5.



**Fig. S6.** TEM images after 54 h photocatalysis reaction in 6 M FA aqueous solution using 2 mg photocatalyst at pH 3.5.



Figure S7. XPS data of 5 wt%  $CdS/W_2N_3$  samples after 54 h stability test in 6 M FA aqueous solution at pH 3.5. High-resolution XPS spectra of (a) Cd 3d, (b) S 2p, (c) W 4f, and (d) N 1s.



Figure S8. Mott–Schottky plots of (a) CdS nanorods and (b)  $W_2N_3$  nanosheets with different frequency in the dark.

**Table S1.** The photocatalytic performance with different amount of catalysts. Photocatalytic experiments were carried out in 20 mL formic acid solution (6.0 M) at pH 3.5 using 2 mg photocatalysts.

| Amount of<br>catalyst (mg) | H2<br>(µmol h <sup>-1</sup> ) | H2<br>(µmol mg <sup>-1</sup> h <sup>-1</sup> ) | CO<br>(µmol h <sup>-1</sup> ) | CO<br>(µmol mg <sup>-1</sup> h <sup>-1</sup> ) |
|----------------------------|-------------------------------|------------------------------------------------|-------------------------------|------------------------------------------------|
| 1                          | 124                           | 124                                            | 91                            | 91                                             |
| 2                          | 262                           | 131                                            | 207                           | 103.5                                          |
| 5                          | 508                           | 101.6                                          | 402                           | 80.4                                           |
| 10                         | 596                           | 59.6                                           | 501                           | 50.1                                           |

| catalysts                         | λ<br>(nm)  | Η <sub>2</sub><br>(μmol mg <sup>-1</sup> h <sup>-1</sup> ) | AQY<br>(%, H <sub>2</sub> ) | CO<br>(µmol mg <sup>-1</sup> h <sup>-1</sup> ) | AQY<br>(%, CO) | Stability<br>(h) | Referance                                                        |
|-----------------------------------|------------|------------------------------------------------------------|-----------------------------|------------------------------------------------|----------------|------------------|------------------------------------------------------------------|
| FeP@CdS NRs                       | ≥420       | 278                                                        | 54                          | 0                                              | -              | > 96             | ACS Appl. Mater:<br>Interfaces <b>2021</b> , 13,<br>23751-23759. |
| Fe salen/CdS NRs                  | $\geq$ 420 | 150                                                        | 16.8                        | 71.5                                           | 9.3            | > 30             | Angew. Chem. 2020, 59, 14818-14824.                              |
| CdS/CoP@RGO                       | $\geq$ 420 | 182                                                        | 32                          | trace                                          | -              | > 120            | <i>Joule</i> <b>2018</b> , 2, 549-<br>557.                       |
| CoPSA-CdS NRs                     | > 400      | 102                                                        | 6.47                        | 0                                              | -              | > 24             | Adv. Mater. 2020,<br>32,1904249.                                 |
| Co-Ni/CdS                         | > 420      | 32.6                                                       | -                           | 0                                              | -              | > 18             | ChemSusChem 2018,<br>11, 2587-2592.                              |
| $Au_{0.75}Pd_{0.25}/TiO_2$        | 1 sun      | 17.7                                                       | 15.6                        | 0.2                                            | -              | > 9              | Appl. Catal. B<br>Environ. <b>2015</b> , 162,<br>204-209.        |
| Pd/C <sub>3</sub> N <sub>4</sub>  | > 400      | 53.4                                                       | -                           | 0                                              | -              | > 6              | Angew. Chem. 2013, 125, 12038-12041.                             |
| Co <sup>2+/</sup> CdS QDs         | > 420      | 116                                                        | 21.2                        | trace                                          | -              | > 168            | Angew. Chem. Int.<br>Ed. <b>2015</b> ,54,9627-<br>9631.          |
| CdS/W <sub>2</sub> N <sub>3</sub> | $\geq$ 420 | 131                                                        | 17.6                        | 103.5                                          | 16.9           | > 54             | This work                                                        |

**Table S2.** Comparison of the  $H_2$  and CO generation rate for photocatalytic formic acid decomposition of the CdS/W<sub>2</sub>N<sub>3</sub> with other reported high performance photocatalysts.