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1. Materials and methods

Materials

All reagents and solvents, unless otherwise specified, were purchased from commercial 

sources and were used without further purification. D18, PM6, PBDB-T, J52 and 

PDINN were purchased from Solarmer Material Inc.
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Scheme S1 Synthetic route for BO-4T.
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3,3'-bis(2,4,6-triisopropylphenyl)-2,2'-bithiophene (Compound 2)



3,3'-dibromo-2,2'-bithiophene (2.52 g, 7.78 mmol), (2,4,6-triisopropylphenyl)boronic 

acid (7.72 g, 31.1 mmol) and KOtBu (6.09 g, 54.3 mmol) were dissolved into the 

solution of tBuOH (38 mL) and dimethoxyethane (95 mL), then the mixture was frozen 

by liquid nitrogen, after vacuum and Ar circulated for three times. Pd(PPh3)4 (0.539 g, 

0.47 mmol) was added in, followed by another three times of the former circulation. 

The mixture was refluxed at 90 °C for 96 h. Using water to wash the crude product and 

dichloromethane to obtain the organic phase. After removing the solvent, silica gel 

column chromatography was used to purify the product with petroleum ether as the 

eluent, yielding a white solid of compound 2 (3.67 g, 83%). 1H NMR (500 MHz, CDCl3, 

): 7.09 (s, 4H), 7.00 (d, J = 4.1 Hz, 2H), 6.70 (d, J = 4.1 Hz, 2H), 3.05-2.94 (m, 2H), 

2.68-2.58 (m, 4H), 1.35 (d, J = 5.5 Hz, 12H), 1.08 (dd, J = 5.5, 9.4 Hz, 24H).
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5,5'-dibromo-3,3'-bis(2,4,6-triisopropylphenyl)-2,2'-bithiophene (Compound 3)

Compound 2 (300 mg, 0.53 mmol) was dissolved into the solution of chloroform (20 

mL) and acetic acid (2 mL), then N-bromosuccinimide (234 mg, 1.31 mmol) was added 

in batches under stirring. After stirring at room temperature for 2 h, silica gel column 

chromatography was used to purify the product with petroleum ether as the eluent, 

yielding a yellow solid of compound 3 (355 mg, 92%). 1H NMR (500 MHz, CDCl3, ): 



7.10 (s, 4H), 6.64 (s, 2H), 3.03-2.95 (m, 2H), 2.65-2.55 (m, 4H), 1.35 (d, J = 5.5 Hz, 

12H), 1.10 (dd, J = 5.5, 13.2 Hz, 24H).
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4,4'''-bis(2-butyloctyl)-3'',4'-bis(2,4,6-triisopropylphenyl)-2,2':5',2'':5'',2'''-

quaterthiophene (Compound 4)

Compound 3 (300 mg, 0.41 mmol) and tributyl(4-(2-butyloctyl)thiophen-2-yl)stannane 

(490 mg, 0.91 mmol) were dissolved into the solution of Toulene (30 mL) and N, N-

dimethylformamide (DMF, 3 mL), then the mixture was frozen by liquid nitrogen, after 

vacuum and Ar circulated for three times, Pd(PPh3)4 (23.7 mg, 0.02 mmol) was added 

in, followed by another three times of the former circulation. The mixture was refluxed 

at 110 °C for 12 h. After cooling to room temperature (r.t.), silica gel column 

chromatography was used to purify the product with the mixture of petroleum ether and 

dichloromethane (1:1, v/v) as the eluent, yielding an orange solid of compound 4 (360 

mg, 82%). 1H NMR (500 MHz, CDCl3, ): 7.14 (s, 4H), 6.81 (s, 2H), 6.67 (s, 2H), 6.64 

(s, 2H), 3.05-2.98 (m, 2H), 2.75-2.68 (m, 4H), 2.44-2.41 (m, 4H), 1.38 (d, J = 5.5 Hz, 

14H), 1.29-1.24 (m, 26H), 1.15-1.04 (m, 28H), 0.91-0.85 (m, 14H).
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4,4'''-bis(2-butyloctyl)-3'',4'-bis(2,4,6-triisopropylphenyl)-[2,2':5',2'':5'',2'''-

quaterthiophene]-5,5'''-dicarbaldehyde (Compound 5)

To a Schlenk tube under Ar atmosphere at 0 °C, 1 mL DMF and 0.8 mL POCl3 were 

injected successively. After being stirred for 0.5 h at 0 °C, compound 4 (200 mg, 0.19 

mmol) was added into the reaction system through 1,2-dichloroethane (10 mL) as the 

solvent. The mixture was refluxed at 80 °C for 10 h. After cooling to r.t., the mixture 

was extracted with a syringe and injected into a NaHCO3 aqueous solution dropwise, 

then stirred for another 8 h. Using water to wash the crude product and dichloromethane 

to obtain the organic phase. After removing the solvent, silica gel column 

chromatography was used to purify the product with the mixture of petroleum ether and 

dichloromethane (1:1, v/v) as the eluent, yielding an orange solid of compound 5 (182 

mg, 85%). 1H NMR (500 MHz, CDCl3, ): 9.91 (s, 2H), 7.17 (s, 4H), 7.03 (s, 2H), 6.68 

(s, 2H), 3.07-3.00 (m, 2H), 2.76 (d, J = 5.72 Hz, 4H), 2.67-2.60 (m, 4H), 1.41-1.36 (m, 

14H), 1.30-1.25 (m, 28H), 1.13-1.05 (m, 26H), 0.91-0.84 (m, 14H).
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2,2'-((2Z,2'Z)-((4,4'''-bis(2-butyloctyl)-3'',4'-bis(2,4,6-triisopropylphenyl)-

[2,2':5',2'':5'',2'''-quaterthiophene]-5,5'''-diyl)bis(methaneylylidene))bis(5,6-difluoro-3-

oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (BO-4T)

To a Schlenk tube were added compound 5 (60 mg, 0.053 mmol), 2-(5,6-difluoro-3-

oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (30 mg, 0.24 mmol) and CHCl3 (30 

mL). Then 0.5 mL pyridine was added drop by drop. The mixture was refluxed at 70 

°C for 24 h. After cooling to r.t., silica gel column chromatography was used to purify 

the product with the mixture of petroleum ether and dichloromethane (1:2, v/v) as the 

eluent, yielding a black solid of compound BO-4T (76.5 mg, 93%). 1H NMR (500 

MHz, CDCl3, ): 8.90 (s, 2H), 8.57-8.49 (m, 2H), 7.66-7.59 (m, 2H), 7.32 (s, 2H), 7.22 

(s, 4H), 6.84 (s, 2H), 3.13-3.03 (m, 2H), 2.86-2.78 (m, 4H), 2.69-2.56 (m, 4H), 1.46-

1.39 (m, 12H), 1.35-1.18 (m, 34H), 1.15-1.09 (m, 24H), 0.91-0.84 (m, 12H).

13C NMR (400 MHz, CDCl3) (ppm): δ 185.74, 162.12, 151.48, 151.23, 147.66, 140.97, 

136.02, 135.01, 134.66, 134.54, 132.06, 129.90, 129.47, 126.93, 121.97, 119.98, 

114.89, 114.53, 105.26, 68.80, 40.49, 37.11, 34.88, 34.77, 33.04, 32.69, 31.84, 30.92, 

29.63, 28.56, 26.39, 25.10, 24.54, 23.38, 23.01, 22.67, 14.12.

MS (MALDI-TOF): Calcd for C96H106F4N4O2S4 (M+): 1552.16, Found: 1551.66.

1H NMR spectra and MALDI-TOF MS spectra

1H NMR spectra were obtained on a Bruker Advance III 500 (500 MHz) nuclear 

magnetic resonance (NMR) spectroscope. MALDI-TOF MS spectra were measured on 

the Bruker Ultraflex MALDI.



Cyclic Voltammetry and UV-vis Absorption Tests

Cyclic voltammetry (CV) was done on a CHI600A electrochemical workstation by 

utilizing the acetonitrile solution of 0.1 mol/L 

tetrabutylammoniumhexafluorophosphate (Bu4NPF6). The CV curves were recorded 

versus the potential of SCE, which was calibrated by the ferrocene-ferrocenium 

(Fc/Fc+) redox couple (4.8 eV below the vacuum level). Then LUMO and HOMO 

levels were calculated by the equation of ELUMO/HOMO = -e (Ered/ox+4.41) (eV). UV-vis 

absorption spectra were measured on a Shimadzu UV-1800 spectrophotometer.

Device Fabrication

Organic solar cells (OSCs) were fabricated on glass substrates commercially pre-coated 

with a layer of indium tin oxide (ITO), constructing the inverted structure of 

ITO/PEDOT:PSS/Active Layer/PDINN/Ag. Before fabrication, the substrates were 

pre-cleaned in an ultrasonic bath of detergent, deionized water, acetone and isopropanol 

consecutively, and then treated in an ultraviolet ozone generator for 15 min. After that, 

a thin layer PEDOT:PSS (Baytron P AI4083) was spin coated onto the substrates at 

4500 rpm (~20 nm thick) for 30 s and annealed at 150 °C for 20 min. The substrates 

were put into glovebox. All of the active layers were spin coated from chloroform 

solution and the detailed fabrication conditions were summarized in Table S1. After 

that, the PDINN film was deposited as the cathode buffer layer by the spin-coating of 

a solution of 1.0 mg/mL PDINN in methanol with 3500 rpm. Finally, the Ag (120 nm) 



electrode was deposited by thermal evaporation, and the devices were completed with 

an active area of 0.06 cm2.

J-V and EQE Measurement

The current density-voltage (J-V) curves of OSCs were performed on a Enlitech SS-

X50 solar simulator under the condition of AM 1.5 G illumination, whose light intensity 

was calibrated by a standard Si solar cell at 100 mV cm-2. The EQE data were measured 

by a Solar Cell Spectral Response Measurement System (RE-R, Enlitech). All of the 

devices mentioned were tested by a shadow mask with an area of 0.0473 cm2.

SCLC Measurement

The charge carrier mobilities of the Donor:Acceptor films were measured using the 

space charge limited current (SCLC) method. Electron-only devices were fabricated in 

a structure of ITO/ZnO/Active Layer/PDINN/Ag whereas Hole-only devices utilizing 

the structure of ITO/PEDOT:PSS/Active Layer/MoO3/Ag. The device characteristics 

were extracted by modeling the dark current under forward bias the SCLC expression 

described by the Mott-Gurney Law:

2

r 0 3

9=
8

VJ
L

   (1)

Here, r ≈ 3.5 is the average dielectric constant of the blend film, 0 is the permittivity 

of the free space,  is the carrier mobility, L is the thickness of the film, and V is the 

applied voltage.



GIWAXS Characterization

GIWAXS measurements were conducted at a Xeuss 3.0 SAXS/WAXS laboratory 

beamline at Vacuum Interconnected Nanotech Workstation (Nano-X) in China with Kα 

X-ray of Cu source (operated at 50kV, 0.06 mA, 1.542 Å). GIWAXS patterns were 

recorded by a two dimensional X-ray detector (Eiger2 R 1M, Dectris). The incident 

angle was set to 0.18 degree.

AFM measurement

AFM images were obtained on a VeecoMultiMode atomic force microscopy in the 

tapping mode.



2. Supporting figures

Fig. S1 1H NMR spectrum of compound 2.

Fig. S2 1H NMR spectrum of compound 3.



Fig. S3 1H NMR spectrum of compound 4.

Fig. S4 1H NMR spectrum of compound 5.



Fig. S5 1H NMR spectrum of compound BO-4T.

Fig. S6 13C NMR spectrum of compound BO-4T.



1551. 663

0. 00

0. 25

0. 50

0. 75

1. 00

1. 25

4x10

In
te

ns
. 

[a
.u

.]

500 1000 1500 2000 2500 3000
m/ z

1551. 663
1550. 656

1552. 660

1553. 667

1554. 655

1555. 673

0. 00

0. 25

0. 50

0. 75

1. 00

1. 25

4x10

In
te

ns
. 

[a
.u

.]

1549 1550 1551 1552 1553 1554 1555 1556
m/ z

Fig. S7 The high-resolution mass spectra of BO-4T.



Fig. S8 Simulated molecular geometries and frontier molecular orbitals by DFT 

calculation for BO-4T.

Fig. S9 Cyclic voltammograms of (a) Fc/Fc+ and (b) BO-4T.



Fig. S10 UV-vis absorption spectrum of the pristine films.
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Fig. S11 UV-vis absorption spectrum of the blend films.



Fig. S12 (a) J0.5-V curves of the electron-only devices based on D18:BO-4T, PM6:BO-

4T, PBDB-T:BO-4T and J52:BO-4T blend films. (b) J0.5-V curves of the hole-only 

devices based on D18:BO-4T, PM6:BO-4T, PBDB-T:BO-4T and J52:BO-4T blend 

films.
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3. Supporting tables

Table S1. Device fabrication conditions.

Active Layer D:A Additive Concentration Speed Annealing

D18:BO-4T 1:1.2 0.25% DIO 15.4 mg/mL 3500 rpm 100°C 8min

PM6:BO-4T 1:1.2 0.25% DIO 17.6 mg/mL 3000 rpm 80°C 8min

PBDB-T:BO-4T 1:1.2 0.5% CN 17.6 mg/mL 3000 rpm 80°C 8min

J52:BO-4T 1:1.2 0.5% CN 17.6 mg/mL 2500 rpm 80°C 8min

Table S2. Synthetic parameters of acceptors.

Acceptor NSS RY NCC NUO NHC
SC index 

%
PCE % FOM Ref

Y6 18 125 8 30 50 99.20 15.7 15.83 1
BTP-eC9 17 80.65 8 29 47 93.84 17.8 18.97 2

IT-4F 17 39.37 8 27 44 88.47 13.0 14.69 3
ITIC 15 16.1 7 25 39 76.20 6.80 8.92 4

DF-PCIC 12 33.44 9 22 30 74.03 10.14 13.70 5

BO-4T 12 10.29 6 19 31 61.64 14.33 23.25 
This 
work



The synthetic complexity (SC) value involves five parameters: (1) the number of 

synthetic steps (NSS), (2) the reciprocal yields of the acceptor (RY), (3) the number of 

unit operations required for the isolation/purification of the acceptor (NUO), (4) the 

number of column chromatographic purifications required by the acceptor (NCC), and 

(5) the number of hazardous chemicals used for preparation (NHC).

The SC is calculated according to the following equation:6

 
 max max max max max

log
35 25 15 15 10

log
RYNSS NUO NCC NHCSC

NSS RY NUO NCC NHC


    


(2)

In order to compare acceptor molecules with different synthesis complexity and 

efficiency, a cost-performance figure-of-merit (cp-FOM) are defined as followed:7

FOM = PCE/SC (3)

According to Table S2, values used for the normalization: NSSmax =18; RYmax = 125; 

NUOmax = 30; NCCmax = 9; NHCmax = 50.

Table S3. Detailed Data of GIWAXS Characterization.

In plane Out of plane
System

Q/Å-1 D/Å Q /Å-1 D/Å FWHM CL/ Å
0.238 26.4 1.88 3.34 0.201 34.7 

BO-4T
0.452 13.9 1.73 3.63 0.544 12.8 

1.83 3.43 0.239 29.2 
PM6:BO-4T 0.276 22.8 

1.69 3.72 0.753 9.30 
1.84 3.41 0.250 27.9 

D18:BO-4T 0.268 23.4 
1.52 4.13 0.369 18.9
1.84 3.41 0.281 24.8 

PBDB-T:BO-4T 0.330 19.0 
1.62 3.88 0.609 11.5 
1.84 3.41 0.240 29.1 

J52:BO-4T 0.277 22.7 
1.74 3.61 0.682 10.2 
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