Supporting Information

Amine-assisted synthesis of Ni₃Fe alloy encapsulated in nitrogen-doped carbon for high-performance water splitting

Mengzhi Guo,^a Hong Meng, ^{*b} Junsu Jin,^a and Jianguo Mi^{*a}

^a State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical

Technology, Beijing 100029, China

^b State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources,

College of Chemistry, Xinjiang University, Urumqi, 830046, China

* Corresponding author, E-mail address: <u>menghong@mail.buct.edu.cn;</u>

mijg@mail.buct.edu.cn

Fig. S1 SEM images of (a, b) NiFe-LDH/NF; (c, d) NiFeOx/NF.

Fig. S2 (a)N₂ adsorption-desorption isotherm at 77 K and (b) pore size distribution of Ni_3Fe-NC/NF based on BJH method.

Fig. S3 TEM image of Ni₃Fe-NC/NF.

Fig. S4 (a) TEM image; (b, c) HRTEM images of NiFeOx/NF.

Fig. S5 XRD patterns of Ni₃Fe and Ni foam (NF).

Fig. S6 CV curves of (a) NF, (b) NiFe-LDH/NF, (c) NiFeOx/NF, (d) RuO₂/NF, and (e) Ni₃Fe-NC/NF at various scan rates.

Fig. S7 XRD patterns of Ni_3 Fe-NC/NF and the samples collected after OER and HER stability tests.

Fig. S8 (a) TEM image; (b, c) HRTEM images of Ni₃Fe-NC/NF after OER stability test.

Fig. S9 OER (a) and HER (b) polarization curves of NiFeOx-NC/NF-PVP, NiFeOx-NC/NF-OLA, NiFeOx-NC/NF-TEPA, and Ni₃Fe-NC/NF in 1.0 M KOH solution with a scan rate of 5 mV s⁻¹.

Fig. S10 Compositional characterizations of NiFeOx-NC/NF-PVP, NiFeOx-NC/NF-OLA, NiFeOx-NC/NF-TEDA, and Ni₃Fe-NC/NF. (a) XRD patterns, (b) XPS surveys, (c-f) high-resolution XPS spectra of (c) Ni 2p, (d) Fe 2p, (e) O 1s, and (f) N 1s.

Fig. S11 SEM images of (a, b) NiFeOx-NC/NF-PVP; (c, d) NiFeOx-NC/NF-OLA; (e, f) NiFeOx-NC/NF-TEDA.

Fig. S12 OER (a) and HER (b) polarization curves of $Ni_3Fe-NC/NF-10$, $Ni_3Fe-NC/NF-30$, $Ni_3Fe-NC/NF-40$, and Ni_3Fe-NC/NF in 1.0 M KOH solution with a scan rate of 5 mV s⁻¹.

30, and Ni₃Fe-NC/NF-40. (a) XPS surveys, (b-e) high-resolution XPS spectra of (b) Ni 2p, (c) Fe 2p, (d) O 1s, (e) N 1s, and (f) XRD patterns.

Fig. S14 SEM images of (a, b) Ni₃Fe-NC/NF-10; (c, d) Ni₃Fe-NC/NF-30; (e, f) Ni₃Fe-NC/NF-

Fig. S15 SEM images of (a, b) NiFeOx-NC/NF-400; (c, d) NiFeOx-NC/NF-600.

Fig. S16 Compositional characterizations of NiFeOx-NC/NF-400, Ni₃Fe-NC/NF, and NiFeOx-

NC/NF-600. (a) XRD patterns, (b) XPS surveys, (c-f) high-resolution XPS spectra of (c) Ni 2p, (d) Fe 2p, (e) O 1s, and (f) N 1s.

Fig. S17 OER (a) and HER (b) polarization curves of NiFeOx-NC/NF-400, Ni₃Fe-NC/NF, and NiFeOx-NC/NF-600 in 1.0 M KOH solution with a scan rate of 5 mV s⁻¹.

Fig. S18 The geometric structure of *H on Ni₃Fe-OH/NC.

Fig. S19 The geometric structures of (a) *H, (b-c) *OH, *O, and *OOH on Ni₃Fe-OH/C.

Fig. S20 The geometric structures of (a) *H, (b-c) *OH, *O, and *OOH on Ni₃Fe-OH.

Fig. S21 (a) Gibbs free energy diagram over Ni_3Fe /NC and NiO for the OER at an equilibrium potential of 1.23 V. The highlights indicate the rate-determining step with the value of the limiting energy barrier. (b) Gibbs free energy diagram for the HER.

Fig. S22 The geometric structures of (a) *H, (b-c) *OH, *O and *OOH on Ni₃Fe/NC.

Fig. S23 The geometric structures of (a) *H, (b-c) *OH, *O and *OOH on NiO.

Fig. S24 Chronoamperometry test of Ni₃Fe-NC/NF||Ni₃Fe-NC/NF at the potential of 1.49V in 1 M KOH solution. Inset image shows the LSV polarization curves of Ni₃Fe-NC/NF||Ni₃Fe-NC/NF before and after long-term stability test.

Fig. S25 XRD patterns of Ni_3 Fe-NC/NF and the sample collected after 1260 h stability test for all water splitting.

Fig. S26 (a-d) SEM images of Ni₃Fe-NC/NF after 1260 h stability test for all water splitting.

Table S1. Comparison of OER and HER performance of Ni₃Fe-NC/NF in 1M KOH with other

Samples	OER η ₁₀ (mV)	HER η ₁₀ (mV)	Ref.no
fcc-Ni ₃ Fe/C	201	70	Adv. Funct.Mater., 2021, 32, 2109709
Ni ₂ Fe@NC	237	198	Electrochim. Acta, 2021, 389 , 138785
NF-Na-Fe-Pt	261	31	Appl. Catal. B, 2021, 297, 120395
CS-NFO@PNC-700	217	200	Appl. Catal. B, 2022, 300, 120752
CoP@FeCoP/NC	238	141	Chem. Eng. J., 2021, 403, 120752
Ni ₃ FeN/r-Go	270	94	ACS Nano, 2018, 12 , 245-253
NiFeOP	310	209	ACS Sustain. Chem. Eng., 2021, 9, 9436-
			9443
NiCo ₂ S ₄	243	80	Adv. Funct. Mater., 2019, 29, 1807031

reported bifunctional electrocatalysts.

NiFe-LDH@NiCu	218	66	Adv. Mater., 2019, 31, e1806769
Ni ₃ FeN/Ni ₃ Fe	250	125	J. Mater. Chem. A, 2021, 9, 4036-4043
NiFe@OCC	281	256	ChemElectroChem, 2019, 6, 2497-2502
NiFe(II,III)-LDH	220	120	Small, 2019, 15, e1902551
NiO/NiFe ₂ O ₄	279	282	Small, 2021, 17, e2103501
Cu ₃ P-Cu ₂ O/NPC	286	138	Chem. Eng. J., 2022, 427, 130946
10: MoCo-VS ₂ /CC	248	160	J. Mater. Chem. A, 2022, 10, 9067-9079
Mo ₂ NiB ₂	280	160	Small, 2022, 18, e2104303
Ni ₃ Fe-NC/NF	203	98	This work

Table S2. Comparison of the cell voltage of overall water-splitting for Ni₃Fe-NC/NF in 1M

KOH and other bifunctional electro	ocatalysts.
------------------------------------	-------------

Samples	E (V)@	Ref.no
	10 mA cm ⁻²	
hcp-Ni ₃ Fe/C	1.54	Adv. Funct.Mater., 2021, 32, 2109709
Ni ₂ Fe@NC	1.81	Electrochim. Acta, 2021, 389, 138785
NF-Na-Fe-Pt	1.56	Appl. Catal. B, 2021, 297, 120395
CS-NFO@PNC-700	1.66	Appl. Catal. B, 2022, 300, 120752
CoP@FeCoP/NC	1.68	Chem. Eng. J., 2021, 403, 120752
Ni ₃ FeN/r-Go	1.6	ACS Nano, 2018, 12, 245-253
NiFeOP	1.69	ACS Sustain. Chem. Eng., 2021, 9, 9436-9443
NiCo ₂ S ₄	1.58	Adv. Funct. Mater., 2019, 29, 1807031
Ni ₃ FeN/Ni ₃ Fe	1.61	J. Mater. Chem. A, 2021, 9, 4036-4043
NiFe@OCC	1.7	ChemElectroChem, 2019, 6, 2497-2502
NiFe(II,III)-LDH	1.54	Small, 2019, 15, e1902551
Cu ₃ P-Cu ₂ O/NPC	1.57	Chem. Eng. J., 2022, 427, 130946
10: MoCo-VS ₂ /CC	1.54	J. Mater. Chem. A, 2022, 10, 9067-9079
Mo ₂ NiB ₂	1.57	Small, 2022, 18, e2104303
CuNi@NiFeCu/CP	1.51	Appl. Catal. B, 2021, 298, 120600
NiFeOx(OH)y@MoS ₂ /rGo	1.57	Chem. Eng. J., 2020, 397 , 125454
NiFeP@NC/Ni ₂ P	1.57	Small, 2021, 17, e2006860
Ni ₃ Fe-NC/NF	1.49	This work

Table S3. Comparison of the stability of overall water splitting for Ni $_3$ Fe-NC/NF in 1M KOH

with other reported bifunctional catalysts.

Samples <i>j</i> Tim Ref.no				
	Samples	j	Tim	Ref.no

	(mA cm ⁻²)	e	
		(h)	
hcp-Ni ₃ Fe/C	10	36	Adv. Funct.Mater., 2021, 32, 2109709
NF-Na-Fe-Pt	10	12	Appl. Catal. B, 2021, 297, 120395
Ni ₃ FeN/r-Go	10	100	ACS Nano, 2018, 12, 245-253
d-Ni ₃ FeN/Ni ₃ Fe	70	90	J. Mater. Chem. A, 2021, 9, 4036-4043
CuNi@NiFeCu/CP	80	50	Appl. Catal. B, 2021, 298, 120600
NiFeOx(OH)y@MoS ₂ /rGo	20	12	Chem. Eng. J., 2020, 397 , 125454
NiFeRh-LDH	100	150	Appl. Catal. B, 2021, 284, 119740
Ni ₃ N-Co ₃ N/C	10	168	Appl. Catal. B, 2021, 297, 120461
FNP	10	80	Chem. Eng. J., 2020, 390 , 124515
CuO@CoZn-LDH/CF	10	48	Chem. Eng. J., 2021, 414, 128809
VCoCox@NF	10	70	Chem. Eng. J., 2022, 430, 132623
Fe/Mo ₂ C-NCS	100	24	Chem. Eng. J., 2022, 431, 134126
CoFe-250	60	24	Chem. Eng. J., 2022, 432, 134275
ZCNP/NF	20	200	Adv. Funct. Mater., 2019, 29, 1808889
a-CoMoPx/CF	100	100	Adv. Funct. Mater., 2020, 30, 2003889
Ni ₃ Fe-NC/NF	160	1260	This work