SUPPORTING INFORMATION

Size-matching encapsulation of high-nuclearity Ni-containing

polyoxometalate into light-responsive MOF for robust

photogeneration of hydrogen

Ruijie Wang, Yeqin Feng, Le Jiao, Yuanyuan Dong, Hui Zhou, Tianfu Liu,* Xuemeng Jing,

Hongjin Lv*

MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of

Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical

Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China. Corresponding email: <u>hlv@bit.edu.cn</u>; <u>liutf@bit.edu.cn</u>

Table of Contents

1. Figs. S1-S8

Fig. S1 PXRD patterns of $Ni_{16}As_4P_4$, 0.1- $Ni_{16}As_4P_4$ @NU-1000 and NU-1000S3
Fig. S2 Linear energy dispersive X-ray spectrum the 0.1-Ni ₁₆ As ₄ P ₄ @NU-1000S2
Fig. S3 Photocatalytic hydrogen evolution of 1.0-Ni ₁₆ As ₄ P ₄ @NU-1000 at different
pH values. ·····S4
Fig. S4 Photocatalytic hydrogen evolution of 0.1-Ni ₁₆ As ₄ P ₄ @NU-1000 with various
concentration of AAS4
Fig. S5 Photocatalytic hydrogen evolution of 0.1-Ni ₁₆ As ₄ P ₄ @NU-1000 with various
amount of $Ni_{16}As_4P_4$ @NU-1000S4

Fig. S6 FT-IR spectra of 0.1-Ni ₁₆ As ₄ P_4 @NU-1000 before and after photocatalysisS5
Fig. S7 Fig S6 EDS mapping of 0.1-Ni ₁₆ As ₄ P ₄ @NU-1000 after photocatalytic
hydrogen evolution for 6h. ·····S5
Fig. S8 High resolution-TEM image of 0.1 -Ni ₁₆ As ₄ P ₄ @NU-1000 after photocatalysisS6
Fig. S9 Cyclic voltammetry of $Ni_{16}As_4P_4$ in 0.1M H_2SO_4 aqueous solutionS7

2. Tables S1-S2

Table S1. PL decay (at 488 nm) lifetimes of NU-1000, 0.1-Ni ₁₆ As ₄ P ₄ @NU-1000	
samples upon excitation at 365 nm.	··S8
Table S2. Comparison of different POM@MOF composite as catalysts for	
photocatalytic H ₂ evolution reduction.	··S8
3. Apparent quantum yield calculation	S8
4. References	··S9

Fig. S1 PXRD patterns of $Ni_{16}As_4P_4$, 0.1- $Ni_{16}As_4P_4$ @NU-1000 and NU-1000.

Fig. S2 (a) Scanning electron microscopy (SEM) micrograph and (b) linear energy dispersive X-ray (EDS) spectrum of different elements of the 0.1-Ni₁₆As₄P₄@NU-1000 sample collected along the red dash line shown in Figure S2a, (c, d) enlarged linear EDS signals of W and Ni elements.

Fig. S3 Photocatalytic hydrogen evolution of $1.0-Ni_{16}As_4P_4$ @NU-1000 at different pH values. Conditions: 2 mg of $1.0-Ni_{16}As_4P_4$ @NU-1000, 20 mL of 1 M AA aqueous solution, 300 W Xe-lamp, reaction time of 6 h.

Fig. S4 Photocatalytic hydrogen evolution of 0.1-Ni₁₆As₄P₄@NU-1000 with various concentration of AA. Conditions: 0.1-Ni₁₆As₄P₄@NU-1000, 20 mL of AA aqueous solution at pH 5.5, 300 W Xe-lamp.

Fig. S5 Photocatalytic hydrogen evolution with the different usage amount of 0.1-Ni₁₆As₄P₄@NU-1000 during photocatalysis. Conditions: 0.1-Ni₁₆As₄P₄@NU-1000, 20 mL of 1 M AA aqueous solution at pH 5.5, 300 W Xe-lamp, reaction time of 6 h.

Fig. S6 FT-IR spectra of 0.1- Ni₁₆As₄P₄@NU-1000 before and after photocatalysis for 6 h.

Fig. S7 EDS mapping images of 0.1-Ni₁₆As₄P₄@NU-1000 after photocatalytic hydrogen evolution for 6 h.

Fig. S8 High resolution-TEM image of 0.1-Ni₁₆As₄P₄@NU-1000 after photocatalysis for 6 h.

Fig. S9 Cyclic voltammetry curve of $Ni_{16}As_4P_4$ in 0.1M H₂SO₄ aqueous solution with a threeelectrode cell comprising of a glassy carbon working electrode, a Pt wire auxiliary electrode, and a saturated Ag/AgCl reference electrode. LUMO potential of $Ni_{16}As_4P_4$ was calculated according to the following equation: E (LUMO) = $E_{1/2}$ = ($E_{pc}+E_{pa}$)/2

2. Table S1-S2

Table S1. Comparison of different POM@MOF composites as catalysts for photocatalytic H_2 evolution reaction.

Catalysts	Photosensitizer	Sacrificial reagent	TON	Time	Ref.
P ₂ W ₁₅ V ₃ @MIL-101	$[Ru(bpy)_3]^{2+}$	TEOA	70	8h	1
Ni ₄ P ₂ @MOF-1	Covalently-linked [Ru(bpy) ₃] ²⁺ moiety	methanol	1476	72h	2
P2W18@UiO	Covalently-linked [Ru(bpy) ₃] ²⁺ moiety	TEOA	79	14h	3
PW ₁₂ -Pt@NH ₂ -MIL-53	MIL-53 framework	AA	66	6h	4
WD-POM@SMOF-1	[Ru(bpy) ₃] ²⁺ units	TEOA	392	12h	5
Ni ₃ P ₂ W ₁₆ @NU-1000	NU-1000 framework	AA	2714	12h	6
P ₂ W ₁₈ @NU-1000-Pt	NU-1000 framework	AA	5464	120h	7
Ni ₁₆ As ₄ P ₄ @NU-1000	NU-1000 framework	AA	28600	120h	This work

Table S2. Luminescence decay lifetimes of NU-1000, 0.1-Ni₁₆As₄P₄@NU-1000 samples upon excitation at 365 nm.

Samples	$\tau_1(ns)$	$\tau_2(ns)$	$ au_3(ns)$
NU-1000	0.75	3.92	16.53
0.1-Ni ₁₆ As ₄ P ₄ @NU-1000	0.48	2.36	13.21

3. Apparent quantum yield calculation

$$n_{\text{photons}} = \frac{Pt\lambda}{hcNA} = 3.568 \times 10^{-3} \text{ mol}$$
$$AQY(\%) = \frac{2 \times n_{\text{H2}}}{n_{\text{photons}}} \times 100\% = 1.715\%$$

Where P is the illumination power (P=EA_R, E=2.6 mW/cm²), A_R is the irradiation area (π R², R=2.1cm), t is the illumination time (s, in our cases t =21600 s), equivalent wavelength λ =549 nm for full optical Xe-lamp, h is the Planck constant, c is the velocity of light and NA is Avogadro's number. The illumination time (t = 21600 s) and hydrogen generation amount are based on data recorded in 6-hour timescale.

4. References

- H. Li, S. Yao, H.-L. Wu, J.-Y. Qu, Z.-M. Zhang, T.-B. Lu, W. Lin and E.-B. Wang, *Appl. Catal. B. Environ.*, 2018, 224, 46-52.
- X. J. Kong, Z. Lin, Z. M. Zhang, T. Zhang and W. Lin, Angew. Chem. Int. Ed., 2016, 55, 6411-6416.
- Z. M. Zhang, T. Zhang, C. Wang, Z. Lin, L. S. Long and W. Lin, J. Am. Chem. Soc., 2015, 137, 3197-3200.
- W. Guo, H. Lv, Z. Chen, K. P. Sullivan, S. M. Lauinger, Y. Chi, J. M. Sumliner, T. Lian and C. L. Hill, *J. Mater. Chem. A*, 2016, 4, 5952-5957.
- 5. J. Tian, Z. Y. Xu, D. W. Zhang, H. Wang, S. H. Xie, D. W. Xu, Y. H. Ren, H. Wang, Y. Liu and Z. T. Li, *Nat. Commun.*, 2016, 7, 11580.
- 6. L. Jiao, Y. Dong, X. Xin, L. Qin and H. Lv, *Appl. Catal. B. Environ.*, 2021, **291**, 120091.
- 7. L. Jiao, Y. Dong, X. Xin, R. Wang and H. Lv, J. Mater. Chem. A, 2021, 9, 19725-19733.