Electronic Supplementary Information for

Fluorinated MXene Accelerates the Hydrogen Evolution Activity of *in-situ* Induced Snowflakelike Nano-Pt

Xue Zhao, *^{a,||} Mengshan Chen, ^{b,||} Yingtang Zhou, *^b Haibo Zhang, *^c and Guangzhi Hu*^d

- ^a Faculty of chemistry and chemical engineering, Yunnan Normal University, Kunming 650092, China
- ^bNational Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang
- Ocean University, Zhoushan 316004, China
- ^cCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- dInstitute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental
- Science, Yunnan University, Kunming 650504, China
- ^IThese authors contributed equally
- *The corresponding author Email: <u>xuezhao0208@gmail.com</u> (Dr. X. Zhao); <u>zhouyingtang@zjou.edu.cn</u> (Prof. Y. T. Zhou); <u>haibozhang1980@gmail.com</u> (Prof. H. Zhang); <u>guangzhihu@ynu.edu.cn</u> (Prof. G. Hu)

The powder X-ray diffraction signal was collected on the X-ray powder diffractometer (Rigaku, Japan) at a scanning speed of 5°/min, where Cu K α is the excitation source. Specifically, the material was evenly spread in the groove on the quartz sample stage, and then the surface of the material were flattened with a glass slide and placed in an X-ray powder diffractometer to collect XRD signals with a working voltage of 40 kV and a current of 40 A.

The X-ray photoelectron spectroscopy (XPS) signal was collected by X-ray photoelectron spectrometer (Thermo Scientific K-Alpha), and the binding energy of the final signal was corrected by standard C (284.8 eV). Among them, the entire acquisition process was completed in a near-vacuum chamber with a working voltage of 12 kV, a filament current of 6 mA, and an excitation source of Al K α ray (0.6 eV).

Field emission scanning electron microscope (SEM, the instrument model is ZEISS SIGMA) and transmission electron microscope (TEM, the instrument model is Titan G260-300) were used to observe the microstructure of materials. When collecting SEM images, the material were directly covered on the surface of the conductive adhesive pasted on the sample stage, the vacuum degree of the instrument reaches 5×10^{-5} mbar, the working voltage was 3 kV, and the signal acquisition mode is InLens. When collecting TEM images, the material were directly dispersed (ultrasound for 10 min) to form a suspension in ethanol solution, and then dropped onto the ultrathin micro-grid support film. The operating voltage of the TEM instrument was 300 kV.

The Zeta potential of the material was determined by a Zeta potentiometer (model is Malvern Zetasizer Nano ZS). Among them, the material was directly dispersed in 5 mL ultrapure water (sonicated for 30 min), and then placed in a Zeta potentiometer to collect Zeta signals.

Inductively coupled plasma emission spectrometer was used to detect the exact Pt content in the material, where the loadings of Pt in MXene/B-Pt and Pt/C are 3.35 wt% and 20.00 wt%, respectively. The test details are as follows:

The sample was dispersed in 100 mL of aqua regia, and after ultrasonic treatment for 30 min, it was left to stand for 24 h to convert all the Pt species in the sample into water-soluble ionic states. After diluting by a certain factor, the signal was collected on the ICP-OES instrument, and the accurate loading amount of Pt was obtained by the standard curve interpolation method.

Note: The above characterization methods are all ex-situ tests.

Figure S1. Schematic diagram of electrochemical experiment device

Figure S2 (a) PXRD signals of Ti₃AlC₂, MXene, and MXene/B-Pt; (b) Local amplification of the PXRD signal of MXene/B-Pt.

Figure S3 XPS signal (full spectrum) of MXene/B-Pt.

Figure S4 XPS signal (fine spectrum of Pt element) of MXene/B-Pt.

Figure S5 (a-b) SEM images of Ti_3AlC_2 ; (c-d) TEM images of Ti_3AlC_2 .

Figure S6. The branch width of the snowflake-like Pt nanoparticles is about 3 nm.

Table S1. Overpotentials of MXene/B-Pt with other recently reported Pt-based HER catalysts. (1 M KOH)					
Catalyst	Electrolyte	η10 (mV)	Information Sources		
Pt/CNW@PCN-222	1 M KOH	115	Small, 2020, 16, 2005111		
Pt@PCM	1 M KOH	105	Science Advances, 2018, 4, eaao6657		
PtNWs/SL-Ni(OH) ₂	1 M KOH	70	Nature Communications, 2015, 6, 6430		
CDs/Pt PANI	1 M KOH	56	Applied Catalysis B: Environmental, 2019, 257, 117905		
Mo ₂ C@NC@Pt	1 M KOH	47	ACS Applied Materials & Interfaces, 2019,11, 4047-4056		
Pt ₅ /HMCS	1 M KOH	46.2	Advanced Materials, 2020, 32, 1901349		
Pt on WS ₂	1 M KOH	45	Advanced Materials, 2018, 30, 1704779		
PtCoFe@CN	1 M KOH	45	ACS Applied Materials & Interfaces, 2017, 9, 3596-3601		
Pt/Ni(HCO ₃) ₂	1 M KOH	44	Angewandte Chemie International Edition, 2019, 58, 5432-5437		
Pt ₃ Ni ₂ -NWs/SC	1 M KOH	42	Nature Communications, 2017, 8, 14580		
NiOx/Pt ₃ Ni	1 M KOH	40	Angewandte Chemie International Edition, 2016, 55, 12859		
Pt1/NMHCS	1 M KOH	40	Advanced Materials, 2021, 2008599		
PtNi-O/C	1 M KOH	39.8	Journal of the American Chemical Society, 2018, 140, 9046-9050		
Pt/OLC	1 M KOH	38	Nature Energy, 2019, 4, 512-518		
Pt/NiO@Ni/NF	1 M KOH	34	ACS Catalysis, 2018, 18, 8866-8872		
A-CoPt-NC	1 M KOH	32	Angewandte Chemie International Edition, 2019, 58, 9404		
C Pt@ZIF-67	1 M KOH	32	Journal of Materials Chemistry A, 2018, 6, 1376-1381		
Pt/GHSs	1 M KOH	27	Small Structures, 2021, 2, 2000017		
Pt/MBOPs	1 M KOH	22.8	Journal of Materials Chemistry A, 2020, 8, 7171		
Pd/Cu-Pt	1 M KOH	22.8	Angewandte Chemie International Edition, 2017, 56, 16047		
MXene/B-Pt	1 M KOH	20	This Work		

Table S2. Overpotentials of MXene/B-Pt with other recently reported Pt-based HER catalysts (in acid medium).						
Catalyst	Electrolyte	η10 (mV)	Information Sources			
PEDOT-g-PAA/Pt 15s	0.5 M H ₂ SO ₄	190	ACS Appl. Energy Mater., 2019, 2, 1436			
Pt/3D sulfur-doped graphene	0.5 M H ₂ SO ₄	112	Int. J. Hydrogen Energy, 2018, 43, 23231			
Ti ₃ C ₂ T _x @Pt/SWCNTs	$0.5 \text{ M H}_2 \text{SO}_4$	104	Adv. Funct. Mater., 2020, 30, 2000693			
Pt/NaTiO	0.1 M HClO ₄	~75	J. Mater. Chem. A, 2020, 8, 16582			
Pt-MoO _{3-x} nanoflakes MoS ₂	0.5 M H ₂ SO ₄	69	J. Catal., 2020, 381, 1			
S-M-5Pt	$0.5 \text{ M H}_2 \text{SO}_4$	62	Adv. Funct. Mater., 2020, 30, 2000693			
TBA-Ti ₃ C ₂ T _x -Pt-20	0.5 M H ₂ SO ₄	55	ACS Sustainable Chem. Eng., 2019, 7, 4266			
Pt/graphene film	0.5 M H ₂ SO ₄	52	ACS Sustainable Chem. Eng., 2019, 7, 11721			
CoPt@ZIF-67	0.5 M H ₂ SO ₄	50	J. Mater. Chem. A, 2019, 7, 6543			
10Pt@high proportion polyaniline doped bacterial cellulose	0.5 M H ₂ SO ₄	47	Int. J. Hydrogen Energy, 2018, 43, 6167			
Pt/defective WO ₃ @CFC	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	42	J. Mater. Chem. A, 2019, 7, 6285			
LPWGA with WO _{3-x} -Pt	$0.5 \text{ M H}_2\text{SO}_4$	42	Small, 2021, DOI: 10.1002/smll.202102159			
Pt-WO ₃	0.5 M H ₂ SO ₄	39	Nano Energy, 2020, 71, 104653			
Pt single atom/ mesoporous WO _{3-x}	0.5 M H ₂ SO ₄	38	Angew. Chem. Int. Ed., 2019, 58, 16038			
Pt-carbon quantum dots-coloaded	0.5 M H ₂ SO ₄	38	J. Power Sources, 2020, 451, 227770			
Pt-TiO _{2-x} nanosheets	$0.5 \mathrm{~M~H_2SO_4}$	35	Nanoscale, 2020, 12, 11055			
Pt-FeNi@ porous graphene shells	0.5 M H ₂ SO ₄	~35	J. Mater. Chem. A, 2019, 7, 24347			
Mo ₂ TiC ₂ T _x -VMo	0.5 M H ₂ SO ₄	30	Nature Catalysis			
carbon dots-Pt modified polyaniline nanosheets grown on carbon cloth	0.5 M H ₂ SO ₄	30	Appl. Catal., B, 2019, 257, 117905			
Mo ₂ C@NC@Pt	0.5 M H ₂ SO ₄	27	ACS Appl. Mater. Interfaces, 2019, 11, 4047			
Pt-WC1,10/Zn-Co-ZIFs	0.5 M H ₂ SO ₄	23	Electrochim. Acta, 2019, 328, 135077			
MXene/B-Pt	$0.5 \mathrm{H}_2\mathrm{SO}_4$	14	This Work			