Supporting information

Thermoplastic charge-transfer hydrogels for highly sensitive strain and temperature sensors

Ru Zhang,[†] Cuiwen Liu,[†] Chengmeng Wei,[†] Yao Wang,[†] Feng Li,[†] Zhiqiang Zhang,[†] Jinqing Qu,[‡] Ning Qing,[†] Liuyan Tang^{*, †}

[†]School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China

[‡]School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

*Corresponding author.

E-mails: wyuchemtangly@126.com (Liuyan Tang).

Sample	MVBBP (mg)	SVBPTS (mg)	NaSS (mg)	H2O (mL)	ACVA (mg)	KCl (mg)
CT ₁ -K ₀	61.7	88.0	296.9	1.2	4.8	/
CT ₁ -K _{0.3}	61.7	88.0	296.9	1.2	4.8	26.8
CT ₁ -K _{0.5}	61.7	88.0	296.9	1.2	4.8	44.7
CT1-K0.7	61.7	88.0	296.9	1.2	4.8	62.6
CT ₁ -K ₁	61.7	88.0	296.9	1.2	4.8	89.5
CT ₁ -K _{1.3}	61.7	88.0	296.9	1.2	4.8	116.3
CT ₁ -K _{1.5}	61.7	88.0	296.9	1.2	4.8	134.2
CT ₂ -K ₁	136.5	97.3	296.9	1.2	5.2	89.5
CT ₃ -K ₁	228.7	108.7	296.9	1.2	5.8	89.5

 Table S1. Compositions of CT-K hydrogels.

Fig.S1 The ¹H NMR spectra of MVBBP, SVBPTS, the mixture of MVBBP and SVBPTS, the mixture of MVBBP and NaSS, the mixture of MVBBP, SVBPTS and NaSS, and the diluted solution of CT_1 -K₀ hydrogel using D₂O as solvent.

Fig.S2 (A) The cyclic loading–unloading curves of the CT_1 - K_1 hydrogel at a strain of 100% for 10 cycles. (B) The SEM images of the CT_1 - K_1 hydrogel after being stretched at a strain of 100% for 10 cycles.

Fig.S3 The conductivity of CT_1 - K_0 and CT_1 - K_1 hydrogels.

Sensing materials	Gauge Strain		Ref.	
	0.07	1 aliges (70)		
starch/polyacrylamide/borax/glycerol	0.8/	0-230	1	
	1.4/	230-500		
Cellulose/PA/PANI	2.62	0-120	2	
	1.73	0-40		
TAPU/Fe-4 hydrogel	2.15	40-100	3	
	3.24	100-200		
	• 60			
PAA/NCT hydrogel	2.69	0-500	4	
	0 104	0 5-300		
PAM/CC/NaCl gel	0.101	300-800	5	
	0.211	500 000		
P(SBMA-co-AAC)/CS-Cit DN	2.93	0-150	6	
nydroger				
PVA/PA/NP-2 hydrogel	3.44	0-125	7	
PBST4 sensor	1.66	-650	8	
(PVA, borax, SF, and TA)	1.00	-050	0	
	2.0	0.700	0	
PC4.516M45-3 hydrogel	2.9	0-700	9	
	1.54	0-100		
PGS ₈ C ₂₀ hvdrogel	2.32	200-300	10	
· 2.0 J G	2.68	400-500	-	
	4.02	0-350		
CT_1 - K_1	4.02 8.71	350 000	This work	
	0./1	330-900		

Table S2. A comparison on the gauge factor and strain sensing range of the strain

 sensor in this work with other hydrogel-based strain sensors.

Sensing materials	TCR (% °C ⁻¹)	Temperature ranges (°C)	Ref.
PGBC-B organohydrogel	0.956	30-90	11
BP/LEG on SEBS	0.1736	25-50	12
LC-GO/CMC	0.289	20-80	13
Laser-engraved graphene	0.06	25-50	14
Ag nanocrystal/PDMS	0.185	30-50	15
N, F-CDs	1.11	25-60	16
interlocked TPU@IL2	2.10 0.62 0.57	30-50 50-77 77-98	17
3 wt% Composites	0.8	20-65	18
PTCF	0.95	20-40	19
laser-patterned carbonized films	0.142	-10-60	20
CT ₁ -K ₁	3.20 1.39 0.72	5-20 20-50 50-70	This work

Table S3. A comparison on the TCR and temperature sensing range of the temperature sensor in this work with other temperature sensors.

Fig.S4 Repetitive temperature-discrimination ability of CT_1 -K₁ hydrogel-based temperature sensor by alterative placing at 35 °C and 38 °C.

Fig.S5 (A) Resistance stability test of CT_1 -K₀ hydrogel-based temperature sensor at 25 °C, 37 °C and 60 °C. (B) The instantaneous electrical response of CT_1 -K₀ hydrogel-based temperature sensor by alterative placing at high (60 °C) and low (25 °C) temperature.

Fig.S6 The UV-Vis spectra of the mixed solution of MVBBP, SVBPTS and NaSS with

or without 1 M KCl at 25 $^{\circ}\mathrm{C}$ and 80 $^{\circ}\mathrm{C}.$

Fig.S7 The SEM image of the thermoplastic CT_1 -K₁ hydrogel.

Fig.S8 Application of the thermoplastic CT1-K1 hydrogel-based sensor in monitoring

(A) Wrist bending. (B) Elbow bending. (C) Sitting down/standing up.

Fig.S9 Resistance stability test of thermoplastic CT_1 - K_1 hydrogel-based temperature sensor at 25 °C, 37 °C and 60 °C.

References:

- W. Si, Y. Liang, Y. Chen and S. Zhang, J. Mater. Chem. A, 2022, 10, 17464–17476.
- H. Wan, C. Qin and A. Lu, J. Mater. Chem. A, 2022, 10, 17279– 17287.
- Y. Liu, Z. Zhang, Z. Liang, Y. Yong, C. Yang and Z. Li, *J. Mater. Chem. A*, 2022, 10, 16928–16940.
- X. Jing, P. Feng, Z. Chen, Z. Xie, H. Li, X. F. Peng, H. Y. Mi and Y. Liu, ACS Sustain. Chem. Eng., 2021, 9, 9209–9220.
- H. Ding, X. Liang, Q. Wang, M. Wang, Z. Li and G. Sun, *Carbohydr. Polym.*, 2020, 248, 116797.
- J. Zhang, L. Chen, B. Shen, Y. Wang, P. Peng, F. Tang and J. Feng,
 Mater. Sci. Eng. C, 2020, **117**, 111298.
- L. Shao, Y. Li, Z. Ma, Y. Bai, J. Wang, P. Zeng, P. Gong, F. Shi, Z. Ji, Y. Qiao, R. Xu, J. Xu, G. Zhang, C. Wang and J. Ma, *ACS Appl. Mater. Interfaces*, 2020, **12**, 26496–26508.
- 8 H. Zheng, N. Lin, Y. He and B. Zuo, ACS Appl. Mater. Interfaces, 2021, 13, 40013–40031.
- 9 D. Kong, Z. M. El-Bahy, H. Algadi, T. Li, S. M. El-Bahy, M. A. Nassan, J. Li, A. A. Faheim, A. Li, C. Xu, M. Huang, D. Cui and H. Wei, *Adv. Compos. Hybrid Mater.*, 2022, 1976–1987.
- 10 X. Liu, Z. Wu, D. Jiang, N. Guo, Y. Wang, T. Ding and L. Weng,

Adv. Compos. Hybrid Mater., 2022, 1712–1729.

- J. Gu, J. Huang, G. Chen, L. Hou, J. Zhang, X. Zhang, X. Yang, L. Guan, X. Jiang and H. Liu, ACS Appl. Mater. Interfaces, 2020, 12, 40815–40827.
- A. Chhetry, S. Sharma, S. C. Barman, H. Yoon, S. Ko, C. Park, S.
 Yoon, H. Kim and J. Y. Park, *Adv. Funct. Mater.*, 2021, **31**, 2170068.
- Q. Li, R. Bai, Y. Gao, R. Wu, K. Ju, J. Tan and F. Xuan, ACS Appl.
 Mater. Interfaces, 2021, 13, 10171–10180.
- Y. Yang, Y. Song, X. Bo, J. Min, O. S. Pak, L. Zhu, M. Wang, J. Tu,
 A. Kogan, H. Zhang, T. K. Hsiai, Z. Li and W. Gao, *Nat. Biotechnol.*,
 2020, 38, 217–224.
- J. Bang, W. S. Lee, B. Park, H. Joh, H. K. Woo, S. Jeon, J. Ahn, C. Jeong, T. il Kim and S. J. Oh, *Adv. Funct. Mater.*, 2019, 29, 1–8.
- J. Zhu, H. Chu, J. Shen, C. Wang and Y. Wei, J. Colloid Interface
 Sci., 2021, 586, 683–691.
- Y. Xu, L. Chen, J. Chen, X. Chang and Y. Zhu, ACS Appl. Mater.
 Interfaces, 2022, 14, 2122–2131.
- 18 L. Dan and A. L. Elias, *Adv. Healthc. Mater.*, 2020, **9**, 1–13.
- 19 F. Li, H. Xue, X. Lin, H. Zhao and T. Zhang, ACS Appl. Mater. Interfaces, 2022, 14, 43844–43852.
- S. Gandla, M. Naqi, M. Lee, J. J. Lee, Y. Won, P. Pujar, J. Kim, S. Lee and S. Kim, *Adv. Mater. Technol.*, 2020, 5, 1–9.