Supporting information

3D-printed Al metal-organic framework/S cathode with efficient adsorption and redox conversion of polysulfides in lithium-sulfur batteries

Wen Xi,¹ Junpu Zhang,¹ Youfang Zhang,² Rui Wang,¹ Yansheng Gong,¹ Beibei He,¹ Huanwen Wang,¹ Jun Jin^{1, 3*}

¹Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; ²Hubei Key Laboratory of Polymer Materials, Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; ³Shenzhen Research Institute, China University of Geosciences, Shenzhen 518000, China. *Corresponding author. E-mail address: jinjun@cug.edu.cn

Characterizations and electrochemical measurements

1. Characterizations

The morphologies and structures of samples are tested by scanning electron microscope (SEM, Hitachi SU-3500) and transmission electron microscope (TEM, FEI Talos F200S). To take optical and SEM images of the 3DP Al-MOF/S cathode, the 3D grid cathode printed on the battery shell is put into water, and the free-standing 3DP Al-MOF/S cathode is detached from the battery shell after 1 min. The X-ray diffraction (XRD) patterns of the samples are characterized on a D8-FOCUS (Bruker AXS, Panalytical) instrument with Cu Kα radiation (1.5418 Å) at 40 kV and 40 mA. The nitrogen adsorption-desorption isotherms and specific surface areas are tested on Micrometrics equipment (ASAP-2460). The X-ray photoelectron spectroscopy (XPS) spectra are collected using a Theta Probe electron spectrometer (Thermo Scientific K-Alpha).

2. Electrochemical measurements

The Li-S batteries (CR 2032-type coin cells) are assembled in an Ar-filled glove box using 3DP Al-MOF/S cathode, Celgard 2400 separator, and Li anode. 20 μ L of 1.0 M LiTFSI in DOL/DME (1:1 by volume) electrolyte with 1.0% LiNO₃ is used in the cells. The printed grid electrode area of the 3DP cathode is 0.36 cm², and the actual area of the 3DP cathode is 0.182 cm². Galvanostatic charge-discharge measurements are performed on a Land CT3001A battery tester with a voltage range from 1.7 to 2.7 V. Cyclic voltammetry (CV) curves are tested on an electrochemical workstation (CHI660E) at different scan rates in a voltage range of 1.7 - 2.8 V. Electrochemical impedance spectra (EIS) are collected on a Gamry workstation in a frequency ranging from 10⁵ to 10⁻² Hz.

Electrode	Total mass (mg)	Mass of Al- MOF-160/S (mg)	Mass of sulfur (mg)	Sulfur loading (mg cm ⁻²)	actual area (cm²)	
	1.181	0.827	0.496	2.730		
3DP Al-MOF-	1.931	1.352	0.811	4.270	0.192	
160/S	2.214	1.550	0.930	5.120	0.182	
	6.896	4.808	2.885	15.85		

Table S1. The mass loading parameters of the 3DP Al-MOF-160/S electrode.

	3DP printing electrode			Macropores				Total	Macropore	Poro
Material	Length (mm)	Width (mm)	Height (mm)	Number	Length (mm)	Width (mm)	Height (mm)	volume (mm³)	Volume (mm³)	sity (%)
3DP Al- MOF-160/S	6	6	0.213	36	0.703	0.703	0.213	7.668	3.790	49.4
	Width 6 mm	Length 6 m	n p p p t 0.213 mm	Width 0.703 mm	Length 0	703 mm	1 mm			

	Table S2.	The sizes	of macro	pores and	porosity in	1 the 3	3DP	electrode.
--	-----------	-----------	----------	-----------	-------------	-----------	-----	------------

Figure S1. SEM images of the Al-MOF samples fabricated at (a)-(e) 120 °C, (f)-(j) 140 °C, and (k)-(o) 160 °C for 8, 10, 12, 14, and 16 h.

Figure S2. The TEM-EDS spectrum of Al-MOF-160.

Figure S3. SEM images of (a), (d) Al-MOF-120/S, (b), (e) Al-MOF-140/S, and (c), (f) Al-MOF-160/S.

Figure S4. Visual demonstration of static Li_2S_4 adsorption properties of (a) Al-MOF-120, (c) Al-MOF-140, and (e) Al-MOF-160. The SEM images of (b) Al-MOF-120, (d) Al-MOF-140, and (f) Al-MOF-160 after Li_2S_4 adsorption.

Figure S5. Schematic illustration of the 3DP ink preparation.

Figure S6. Various 3DP patterns printed from as-prepared Al MOF/S inks.

Figure S7. The printing size of the 3D-printed electrode.

Figure S8. (a)-(d) CV curves of 3DP A1-MOF-160/S at different scan rates (0.3, 0.5, 0.7, and 1.0 mV s⁻¹). (e)-(f) The determination of the *b*-value using the relationship between current intensity and scan rate.

Figure S9. The charging-discharging profiles of the 3DP Al-MOF-160/S cathode at 0.1 C.

Figure S10. (a) Rate capabilities at various rates (0.1, 0.2, 0.5, 1.0, and 0.1 C), (b) charging/discharging profiles at select cycles, (c) cycling performance of 3DP Al-MOF-160/S at 0.1 C with sulfur loading of 4.27 mg cm⁻², and (d) cycling performance of 3DP Al-MOF-Al-MOF-160/S at 0.1 C with sulfur loading of 5.12 mg cm⁻².

Figure S11. (a)-(h) Optical images of the 3DP Al-MOF-160/S cathode with high sulfur loading of 15.85 mg cm⁻². (i) Rate performance of the 3DP Al-MOF-160/S cathode with sulfur loading of 15.85 mg cm⁻² at 0.1, 0.2, 0.5, 1.0, and 0.1 C.

Figure S12. (a)-(d) Change of slope during the discharging and charging processes. (e)-(f) The changes of R_s and R_{ct} in the equivalent circuit diagram during discharging and charging processes.

Figure S13. (a)-(d) Optical images of the 3DP Al-MOF-160/S cathode after cycling. (e) SEM image of the 3DP Al-MOF-160/S cathode after cycling.