Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary information

The 2D Van der Waals heterojunction MoC@NG@CN for enhanced photocatalytic hydrogen production

Mengxi Tan^{a,b}, Chengye Yu^{a,b}, Jiaqi Yao^c, Qinyong Zhang^c, Shengyu Kui^c, Chuanbao Liu^{a,c},

Wenjun Dong^{a,c}, Huimin Meng^b, Yanjing Su^{a,b}, Lijie Qiao^{a,b}, Yang Bai^{*a,b}

^a Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China

^b Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China

^c School of Materials Science and Engineering, University of Science and Technology Beijing,

Beijing 100083, China

1. Experiment

1.1 Synthesis

All the chemicals were used without further purification. Triethanolamine (TEOA), $InCl_3 \cdot 4H_2O$, $ZnCl_2$ and $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ were purchased from Aladdin Reagent Co., Ltd. Thioacetamide (TAA), glycerol ($C_3H_8O_3$) and melamine ($C_3H_6N_6$) were supplied by Beijing J&K Scientific Co., Ltd.

1.1.1 Synthesis of MoC@NG

The samples of MoC@NG were synthesized by a simple solid-state reaction method. The 0.465 g (NH₄)₆Mo₇O₂₄·4H₂O and 2.0 g C₃H₆N₆ were mechanically ground for 30 minutes. The obtained homogeneous mixture was calcined under N₂ atmosphere at 500 °C for 2 h with a heating rate of 5 °C min⁻¹, and finally sintered at 800 °C for 120 min.

1.1.2 Synthesis of $g-C_3N_4$

20 g urea was calcined at 550 °C for 3 h in a covered ceramic crucible with a heating rate of 2 °C min⁻¹. The yellow resultant bulk g-C₃N₄ was ground into fine powder. The g-C₃N₄ nanosheets were synthesized by thermal etching bulk g-C₃N₄. The bulk g-C₃N₄ was placed in an open ceramic crucible and heated at 500 °C for 2 h with a heating rate of 5 °C min⁻¹. The obtained light-yellow samples were labeled as CN.

1.1.3 Synthesis of MoC@NG@CN hybrid photocatalyst

240 mg CN was uniformly dispersed in 30 mL deionized water and sonicated for 30 minutes. Subsequently, a certain amount of MoC@NG was added and sonicated for 30 minutes. Finally, the suspension was stirred for 24 h. The samples were obtained by centrifugation and dried overnight in a vacuum drying oven at 60 °C. The prepared samples were labeled as MoC@NG-x@CN (x = 0, 50, 60, 70, 80, 90), and x represents the mass of MoC@NG (mg).

1.2 Characterization

The crystal structure of photocatalysts was analyzed by X-ray diffraction (XRD, Rigaku Ultima IV, Japan) using Cu Kα radiation (40 kV, 40 mA). The microscopic morphology was

observed by field-emission scanning electron microscope (FE-SEM, SUPRA 55, Zeiss) and transmission electron microscope (TEM, JEM-2200FS, JEOL). Energy-dispersive X-ray spectroscopy (EDS) mapping was also obtained by TEM. The X-ray photoelectron spectra (XPS) were determined by an AXIS ULTRA DLD spectrometer using a monochromatic Al Ka radiation (hv = 1486.6 eV). The texture properties of samples were characterized by Brunauer-Emmett-Teller (BET, ASAP 2460). The Ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) were measured with Shimadzu UV-2550. The steady-state photoluminescence (PL) spectra and time-resolved photoluminescence (TRPL) decay plots were implemented on the spectrophotometer (FLS980) with an excitation wavelength of 314 nm. A typical threeelectrode cell using the CHI660E electrochemical workstation was employed to determine the photoelectrochemical performance. The photocatalysts (5 mg) were dispersed in an ethanol solution containing 10 vol% Nafion reagents. The mixed solution was uniformly deposited on a 1 cm \times 1 cm FTO conductive glass as a working electrode, while the Pt sheets and Ag/AgCl electrodes were used as counter and reference electrodes, respectively, and 0.5 M Na₂SO₄ aqueous solution was used as the electrolyte. The electron paramagnetic resonance (EPR) characterization: Endor spectrometer (JES-FA300, JEOL) was used for the characterization of EPR with 300 W Xenon lamp and a 420 nm cutoff filter at room temperature. For the test of $\cdot O_2^{-}$, 5 mg sample was dispersed into methanol (1 mL). Then, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was added to the mixture. Under light irradiation, the signals at 0 and 10 min were collected. For the test of h⁺, 5 mg sample was dispersed into acetonitrile (1 mL), and then 2,2,6,6-tetramethylpiperidinooxy (TEMPO) was added into the mixture. Under light irradiation, the signals at 0 min and 10 min were collected.

1.3 Photocatalytic test

The photocatalytic hydrogen evolution experiments were carried out in a sealed quartz flask (50 mL). In a typical test, the photocatalysts (5 mg) were added into 20 mL 20 vol% TEOA aqueous solution with ultrasonic dispersion for 5 min. Subsequently, the 26 μ L H₂PtCl₆·6H₂O

aqueous solution (5 mg/mL) was added to the reaction solution. Before irradiation, the reactor was evacuated and filled with N₂ to ensure that it remained in an anaerobic condition. A 300 W Xenon lamp equipped with a UV cut-off filter ($\lambda > 400$ nm) was adopted as a light source and was positioned about 10 cm away from the catalytic cell. After four hours of light exposure, the evolved H₂ was analyzed by a gas chromatograph (SHIMADZU GC-2014, TCD). The apparent quantum efficiency (AQE) was measured at monochromatic wavelengths (400 nm, 420 nm, 450 nm, 500 nm and 550 nm), and calculated according to the following equation:

AQE =
$$\frac{N_e}{N_p} \times 100\% = \frac{2 \cdot N_{H_2} \cdot N_A \cdot h \cdot c}{W \cdot S \cdot t \cdot \lambda} \times 100\%$$

Where N_e represents the number of electrons participating in the reaction, N_p means the number of incident photons. NH_2 , N_A , h and c represent the number of evolved H₂ molecules, Avogadro constant, Planck constant and the speed of light. W, S, t and λ represent the irradiation intensity, the irradiation area, the reaction time and the wavelength of monochromatic light, respectively.

2. Figures

Fig. S1 Zeta potentials of CN and MoC@NG in deionized water at pH 7.

Fig. S2 The height spectra corresponding to the AFM image of MoC@NG-70@CN.

Fig. S3 (a) TEM image (the inset is the corresponding high-resolution TEM image); (b) the particle size distribution and (c) Raman spectrum of MoC@NG.

Fig. S4 The XPS spectra of (a) survey, (b) C 1s, (c) N 1s for CN.

Fig. S5 The XPS spectra of (a) survey, (b) C 1s, (c) N 1s, (d) Mo 3d for MoC@NG.

Fig. S6 Textural properties of photocatalysts. (a) N_2 absorption-desorption isotherms and (b) the pore size distribution curves of CN and MoC@NG-70@CN.

3. Tables

Samples	S _{BET} (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Average pore size (nm)
CN	50.90	29.76	0.2615
MoC@NG-70@CN	51.58	23.04	0.2438

Table S1 Textural properties of samples.

Table 3	S2	List	of	the	photocatalytic	hydrogen	production	performance	of	photocatalysts	in
related	sys	stems	5.								

Photocatalyst	Sacrificial agent	Cocatalyst/ sensitizer	Activity (µmol g ⁻¹ h ⁻¹)	Light source	Ref
CN/CBV ²⁺	10 vol% TEOA	Pt	831.4	300 W Xe $lamp$ $(\lambda > 420$ nm)	R ¹
Ni(OH) ₂ /CN	10 vol% TEOA		921.4	300 W Xe lamp (λ>400 nm)	R ²
KPCN	10 vol% TEOA	Pt	1188	300 W Xe $lamp$ $(\lambda > 420$ nm)	R ³
PFNBTBr Pdots/ CN	10 vol% TEOA		1200.9	300 W Xe lamp (λ>400 nm)	R ⁴
CNCNT/CN	10 vol% TEOA	—	1208	300 W Xe lamp	R ⁵
MoNi@MoO ₂ /CN	15 vol% TEOA	_	1359	300 W Xe lamp (λ>400 nm)	R ⁶
CN@HG	10 vol% TEOA	_	1430	350 W Xe lamp (λ>420 nm)	R ⁷
B-TiO ₂ /CN/MoS ₂ QDs	10 vol% TEOA	_	1524.37	300 W Xe lamp simulated solar light	R ⁸
FeSe ₂ /CN	0.15/0.35 M Na ₂ S/Na ₂ S O ₃	_	1655.6	300 W Xe lamp (Microsola r 300UV)	R ⁹
MoC@NC@CN	15 vol% TEOA	_	1709	$300 \text{ W Xe} \\ \text{lamp} \\ (\lambda > 400 \\ \text{nm})$	R ¹⁰
CdS/CN	14 vol% lactic acid	Pt	1809.07	$300 \text{ W Xe} \\ \text{lamp} \\ (\lambda > 420 \\ \text{nm})$	R ¹¹

1T-MoS ₂ QDs/CN	20 vol% TEOA	—	1857	300 W Xe lamp (AM 1.5 G filter)	R ¹²
Ag-N ₂ C ₂ /CN	10 vol% TEOA	—	1866	300 W Xe $lamp$ $(\lambda > 400$ nm)	R ¹³
In ₂ O ₃ /PUCN	10 vol% TEOA	Pt	1917	300 W Xe $lamp\\(\lambda > 400\\nm)$	R ¹⁴
WX _y /CN	10 vol% TEOA	_	1960	AM 1.5 solar simulator	R ¹⁵
MoC@NG@CN	20 vol% TEOA	Pt	2109	300 W Xe lamp (λ>400 nm)	This work

Wavelength (nm)	400	420	450	500	550
AQE (%)	0.256	0.089	0.013	0.002	0.0009

Table S3 The AQEs of MoC@NG-70@CN at different wavelengths.

Samples	τ_1 (ns)	A ₁ (%)	τ_2 (ns)	A ₂ (%)	$\tau_{\rm A}$ (ns)
CN	2.46	50.26	14.00	49.74	12.26
MoC@NG- 70@CN	2.44	50.85	15.07	49.15	13.26

Table S4 Exponential decay-fitted parameters of fluorescence lifetimes for CN and MoC@NG-70@CN.

References

- Y.-N. Liu, C.-C. Shen, N. Jiang, Z.-W. Zhao, X. Zhou, S.-J. Zhao and A.-W. Xu, ACS Catal., 2017, 7, 8228-8234.
- Q. Hao, Y. Song, Z. Mo, J. Deng, J. Yi, W. El-Alami, H. Xu and H. Li, *Sol. RRL*, 2020, 4, 1900538.
- Y. Xu, C. Qiu, X. Fan, Y. Xiao, G. Zhang, K. Yu, H. Ju, X. Ling, Y. Zhu and C. Su, *Appl. Catal.*, *B*, 2020, 268, 118457.
- 4. W. Zhou, Z. Hu, F. Huang, W. Hong and X. Chen, *Appl. Catal.*, *B*, 2020, **270**, 118852.
- Q. Liu, C. Zeng, Z. Xie, L. Ai, Y. Liu, Q. Zhou, J. Jiang, H. Sun and S. Wang, *Appl. Catal.*, *B*, 2019, **254**, 443-451.
- 6. J. Xu, Q. Ji, X. Yan, C. Wang and L. Wang, *Appl. Catal.*, *B*, 2020, **268**, 118739.
- 7. Z. Lin, C. Shao, S. Jiang, C. Sun and S. Song, *Appl. Catal.*, *B*, 2020, **268**, 118742.
- J. Pan, Z. Dong, Z. Jiang, C. Zhao, B. Wang, W. Zhao, J. Wang, C. Song, Y. Zheng and C. Li, *Sol. RRL*, 2019, 3, 1900337.
- J. Jia, W. Sun, Q. Zhang, X. Zhang, X. Hu, E. Liu and J. Fan, *Appl. Catal.*, *B*, 2020, 261, 118249.
- X. Zhou, Y. Tian, J. Luo, B. Jin, Z. Wu, X. Ning, L. Zhan, X. Fan, T. Zhou, S. Zhang and X. Zhou, *Adv. Funct. Mater.*, 2022, **32**, 2201518.
- Z. Wang, Z. Wang, X. Zhu, C. Ai, Y. Zeng, W. Shi, X. Zhang, H. Zhang, H. Si, J. Li, C.-Z. Wang and S. Lin, *Small*, 2021, **17**, 2102699.
- 12. Z. Liang, B. Sun, X. Xu, H. Cui and J. Tian, *Nanoscale*, 2019, **11**, 12266-12274.
- X.-H. Jiang, L.-S. Zhang, H.-Y. Liu, D.-S. Wu, F.-Y. Wu, L. Tian, L.-L. Liu, J.-P. Zou,
 S.-L. Luo and B.-B. Chen, *Angew. Chem., Int. Ed.*, 2020, **59**, 23112-23116.
- W. Wang, X. Bai, Q. Ci, L. Du, X. Ren and D. L. Phillips, *Adv. Funct. Mater.*, 2021, **31**, 2103978.
- 15. M. Shao, W. Chen, S. Ding, K. H. Lo, X. Zhong, L. Yao, W. F. Ip, B. Xu, X. Wang and

H. Pan, ChemSusChem, 2019, 12, 3355-3362.