Supporting Information

Unraveling the Regulation of Polyhydroxy Electrolyte Additive for a Reversible,

Dendrite-Free Zinc Anode

Cong Wang^{a,+}, Junming Hou^{b,+}, Yaping Gan^a, Lei Xie^a, Yi He^{a,*}, Qiang Hu^{b,*}, Shude Liu^{c, d},

Seong Chan Jun^{d,*}

^a Ecology and Health Institute, Hangzhou Vocational and Technical College, Hangzhou 310018, China

^b School of Materials and Energy, University of Electronic Science and Technology of China,

Chengdu 610054, China

^c JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials

Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan

^d School of Mechanical Engineering, Yonsei University, Seoul, 120-749 South Korea

[⁺] These authors contribute equally to this work

*Corresponding Author. Email: <u>heyi24@hzvtc.edu.cn</u> (Y. He), <u>huqiang@std.uestc.edu.cn</u> (Q.

Hu), scj@yonsei.ac.kr (S. C.Jun)

Supplemental Experimental Details

Materials:

Zn foil (~0.1 mm) and Pt were purchased from Haoxuan Metal Material Co., Ltd. $ZnSO_4$ ·7H₂O (>99.0%), sucrose (TS, >99.9%), Ag/AgCl electrode, ammonium persulfate (APS, >99.99%) and V₂O₅ powder (>99.99%) were purchased from Sinopharm Chemical Reagent Co., Ltd. All other reagents were analytical grade and used directly without further purification. Deionized water was used to prepare all aqueous electrolytes.

Materials Characterization:

The micromorphology of the samples was observed using scanning electron microscopy (SEM, FEI-Quanta 250, USA). The elemental analysis of the samples was characterized using a scanning electron microscope (FE-SEM, JSM-7500, Japan) equipped with corresponding energy-dispersive X-ray (EDX) elemental mapping. The crystal structure of the samples was characterized through the X-ray diffraction analysis (XRD, Smart Lab, Rigaku, Japan) with Cu-K α (λ = 1.540598 Å, Smart Lab) source (scan rate of 4° min⁻¹) in the 20 range of 5°~85°. The analysis of the electrolytes was carried out by H magnetic resonance imaging (NMR spectroscopy (Bruker advance III) and Fourier transform infrared spectrum (FTIR, NICOLET iS50, USA).

Electrochemical Tests:

Electrochemical characterization of symmetrical Zn//Zn cells with two different electrolytes was conducted using both transparent cells and 2032-type coin cells. Electrochemical impedance spectroscopy (EIS) of these cells was conducted on an electrochemical workstation (CHI660E, Shanghai, China) over the frequency range of 100 kHz to 1 Hz. The Zn//V₂O₅ coin and pouch cells were galvanostatically charged/discharged in the voltage range of 0.2–1.5 V vs. Zn/Zn²⁺ at different current densities on a Land CT5001A battery tester, and specific capacities were calculated based on the active mass of V₂O₅ cathode. The mass of V₂O₅ and Zn foil are approximately 1.5 mg and 100 mg, respectively. The width of Zn, V₂O₅, and separator are 14 mm, 14 mm, and 18 mm, respectively. In addition, the amount of Suc-containing electrolyte used is 90 μ L.

Transparent Zn Cell and In Situ Dendrite Observation:

A transparent Zn-Zn cell was designed to observe the Zn dendrite growth. Specifically, a transparent glass dish, two Zn ribbons ($0.5 \text{ cm} \times 3 \text{ cm}$), and two plastic clamps form a pool for observing the Zn dendrites. The transparent glass dish is used to store the electrolyte. The Zn dendrites growth was in situ observed by an optical microscope equipped with a digital camera. Meanwhile, the transparent Zn cell was tested for Zn stripping/plating using an electrochemical workstation (CHI660E).

Theoretical Calculations:

The Vienna ab initio simulation package (VASP) was used to perform all the calculations.^[1] The electronic exchange-correlation energy was implemented using the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA), and the projector augmented wave (PAW) method describing electron-ion interactions.^[2] In geometry optimization settings, the atomic positions were optimized until all components of the forces on each atom were less than -0.05 eV/Å and the total energy converge was set to below 10⁻⁵ eV. The DFT-D3 correction was used to describe van der Waals interactions.^[3] A cutoff energy of 400 eV and a Monkhorst-Pack k-point grid of 2×2×1 were used, respectively. A vacuum of 15 Å was set to circumvent periodic interactions between the atoms.

The binding energy (Eb) is defined as

Eb=EA+B-(EA+EB)

where EA+B is the total energy of a combined system of A and B, EB + EA is the sum of the total energies of A and B before the combination. A and B refer to Suc, Zn^{2+} , H₂O, and Zn slab (002), respectively.

Fig. S1. FTIR spectrum of Zn foil soaked in 1 M $ZnSO_4$ with Suc after 1 day.

Fig. S2. SEM image of the pure Zn foil.

Fig. S3. SEM images at different magnifications for the Zn foil soaked in 1 M ZnSO₄ after 7 days.

Fig. S4. SEM images at different magnifications for Zn foil soaked in 1 M ZnSO₄ with Suc after 7 days.

Fig. S5. EDS spectrum of Zn foil soaked in 1 M ZnSO₄ after 7 days.

Fig. S6. EDS spectrum of Zn foil soaked in 1 M ZnSO₄ with Suc after 7 days.

Fig. S7. Comparison of HER performance under $ZnSO_4$ and $ZnSO_4$ + Suc electrolyte systems.

Fig. S8. Comparison of volatility among (a) 1 M Suc, (b) 1 M ZnSO₄ with 10 mM Suc, and (c) 1 M ZnSO₄ at room temperature.

Fig. S9. SEM images of Zn electrodes that are cycled out of the cells in $ZnSO_4$ electrolyte after the 30th plating.

Fig. S10. SEM images of Zn electrodes cycled out of the cells in $ZnSO_4$ electrolyte with Suc after the 30^{th} plating.

Fig. S11. Comparison of long-term galvanostatic charging/discharging of Zn//Zn symmetric cell between 1 M ZnSO₄ and 1 M ZnSO₄ with 10 mM Suc addition under a current density and deposition capacity of 1 mA cm⁻² and 1 mAh cm⁻², respectively.

Fig. S12. Comparison of long-term galvanostatic charging/discharging of Zn//Zn symmetric cell with different Suc concentration addition under a current density and deposition capacity of 5 mA cm⁻² and 5 mAh cm⁻², respectively.

Fig. S13. Comparison of the electrochemical impedance of Zn//Zn symmetric cell in $ZnSO_4$ and $ZnSO_4$ with 10, 50, 100 and 500 mM electrolytes.

Fig. S14. Comparison of the specific capacity of $Zn//V_2O_5$ cells at a current density of 1 A g^{-1} using ZnSO₄, and ZnSO₄ with 10, 50, 100 and 500 mM Suc electrolytes.

Fig. S15. Cycling performance of two $Zn//MnO_2$ coin cells at a current density of 2 A g^{-1} .

Fig. S16. Cycling performance of the $Zn//V_2O_5$ pouch battery under the current density of 6 mA cm⁻².

Table S1. Chemical cost estimation of reported electrolyte systems in ZIBs. (The cost is counted based on the price referred to Shanghai Aladdin Biochemical Technology Co., Ltd with all purity above 98%.)

Electrolyte type	Chemical	Aladdin catalog number (purity)	Mass required (g·L ⁻¹ electrolyte)	Unit Price (\$·g ⁻¹)	Total price (\$·L ⁻¹)	Referenc e
3 m ZnAc ₂ + 3 m LiAc + 30 m KAc	ZnAc ₂	Z110779 (99.99%)	550.44	0.455		
	LiAc	L118858 (99.99%)	197.97	0.697	1271.7	[4]
	KAc	P108329 (99%)	2944.2	0.300		
1 M Zn(TFSI) ₂ + 20 M LiTFSI	Zn(TFSI) ₂	Z299992 (98%)	625.65	3.962	16297 27	[5]
	LiTFSI	B398978 (99.9%)	5741.6	2.405	10287.57	
30 m ZnCl ₂	ZnCl ₂	Z292534 (99.99%)	4089	6.724	27494.44	[6]
4.2 M ZnSO ₄ + 0.1 M MnSO ₄	ZnSO ₄	Z111855 (99%)	1207.71	0.036	47.22	[7]
	MnSO ₄	M111711 (99.99%)	16.91	0.227	47.32	
13 m ZnCl ₂ + 0.8 m H ₃ PO ₄	ZnCl ₂	Z292534 (99.99%)	1771.9	6.724	12094 34	[8]
	H ₃ PO ₄	P120547 (99%)	78.4	2.297	12074.54	
67% Maltose + 2 M ZnSO ₄	Maltose	M104816 (98%)	670	0.102	75.17	[9]
	ZnSO ₄	Z111855 (99%)	189.78	0.036	/3.17	
32 vol% 3 M ZnSO ₄ + 68 vol% EG	Ethylene glycol	E119700 (99.8%)	756.84	0.163	133 30	[10]
	ZnSO ₄	Z111855 (99%)	276.06	0.036	155.50	
10 m M Sucrose + 1 M ZnSO ₄	Sucrose	S112226 (99.9%)	3.42	0.063	10.57	This work
	ZnSO ₄	Z111855 (99%)	287.56	0.036	10.37	

	Electrolyte	Cycling condition		Canasita	
Cathode		Current	Cycle	retention	Reference
		$(A \cdot g^{-1})$	number		
HfO ₂ -coated ZVO	1 M ZnSO ₄	10	1000	84%	[11]
VO	1 M	5	1000	99.3%	[12]
v ₂ O ₅	$Zn(CF_3SO_3)_2$	3			
	3 M	2	2000	94%	[13]
NaCa $_{0.6}$ V $_{6}O_{16}$ $_{5}H_{2}O$	$Zn(CF_3SO_3)_2$	2			
VO ₂	1 M ZnSO ₄	3	945	75.5%	[14]
ЦУО	3 M	20	2000	87%	[15]
$\Pi_2 \vee_3 O_8$	$Zn(CF_3SO_3)_2$	20			
$Fe_5V_{15}O_{39}(OH)_9 \cdot 9H_2O$	1 M ZnSO ₄	5	300	80%	[16]
α-MnO ₂	1 M ZnSO ₄	2.5	100	100%	[17]
V_2O_5	3 M ZnSO ₄	2	400	93.4%	[18]
	10 m M				
MnO ₂	Glucose + 1	3.08	1000	80%	[19]
	M ZnSO ₄				
MnO ₂	2 M ZnSO ₄	1	900	83.1%	[20]
	10 m M				
V_2O_5	Sucrose + 1	$10 \ \mathrm{A} \cdot \mathrm{g}^{-1}$	2000	96.2%	This work
	M ZnSO ₄				

Table S2. Comparison of high current stability performance of ZIBs from previous reports

 and our work.

References:

- [1] G. Kresse, J. Hafner, Phys Rev B Condens Matter. 1993, 47, 558 561.
- [2] J. P. Perdew, K. Burke, Ernzerhof M, Phys Rev Lett. 1996, 77, 3865 3868.
- [3] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J Chem Phys. 2010, 132, 154104.
- [4] J. Han, A. Mariani, A. Varzi and S. Passerini, J. Power Sources. 2021, 485, 229329.
- [5] F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. Dura, K. Xu and C. Wang, *Nat. Mater.* 2018, 17, 543.
- [6] C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu, C. Chen, D. P. Leonard, I. A. Rodriguez-Perez, J. X. Jiang, C. Fang and X. Ji, *Chem. Commun.* 2018, 54, 14097 14099.
- [7] B. Olbasa, F., Fenta, S. Chiu, M. Tsai, C. Huang, B. Jote, T. Beyene, Y. Liao, C. Wang,
 W. Su, H. Dai and B. H wang, ACS Appl. Energy Mater. 2020, 3, 4499 4508.
- [8] H. Shi, Y. Song, Z. Qin, C. Li, D. Guo, X. Liu and X. Sun, Angew. Chem. Int. Ed. 2019, 58, 16057-16061.
- [9] W. Chen, S. Guo, L. Qin, L. Li, X. Cao, J. Zhou, Z. Luo, G. Fang and S. Liang, Adv. Funct. Mater. 2022, 2112609.
- [10] R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding , A. Song , H. Yi , L. Yang , Y. Song , Y. Cui , J. Liu , Z. Wang , S. Li, Q. Zhao, F. Pan, *Nano Energy*. 2021, 80, 105478.
- [11] J. Guo, J. Ming, Y. Lei, W. Zhang, C. Xia, Y. Cui and H. N. Alshareef, ACS Energy Lett.
 2019, 4, 2776 2781.
- [12] N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang, M. Qiu, J. Xu, Y. Liu, L. Jiao and F. Cheng, ACS Energy Lett. 2018, 3, 1366 1372.

- [13] K. Zhu, T. Wu, K. Huang, Adv. Energy Mater. 2019, 9, 1901968.
- [14] Z. Li, S. Ganapathy, Y. Xu, Z. Zhou, M. Sarilar and M. Wagemaker, *Adv. Energy Mater*.2019, 9, 1900237.
- [15] Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang, P. Voyles, G. Chen, Y. Wei and X. Wang, Adv. Energy Mater. 2018, 8, 1800144.
- [16] Z. Peng, Q. Wei, S. Tan, P. He, W. Luo, Q. An and L. Mai, Chem, Chem. Commun.2018, 54, 4041 4044.
- [17] C. Xu, B. Li, H. Du and F. Kang, Angew. Chem. Int. Ed. 2012, 51, 933 935.
- [18] J. Zhou, L. Shan, Z. Wu, X. Guo, G. Fanga and S. Liang, Chem. Commun. 2018, 54, 4457 – 4460.
- [19] P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang, D. Chao and W. Mai, *Angew. Chem. Int. Ed.* **2021**, 60, 18247–18255.
- [20] W. Guo, Y. Zhang, X. Tong, X. Wang, L. Zhang, X. Xia, J. Tu, *Materials Today Energy*.
 2021, 20, 100675.