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1 Synthesis of 9-ethylidene-9H-fluorene (EDF)

2

MgBr

O OH

+ THF

N2, 20 oC

HCl (aq)

A B EDF

CH3COOH

3 The synthetic procedures of model compounds EDF was referred to reported 

4 literature.1 The obtained product was white power and final yield was 76.5%. 1H NMR 

5 (500 MHz, CDCl3, ppm) δ 7.97 (d, 1H), 7.84-7.76 (dd, 2H), 7.72 (d, 1H), 7.46-7.33 (m, 

6 4H), 6.92 (m, 1H), 2.46 (d, 3H). 13C NMR (125 MHz, CDCl3, ppm) δ 140.80, 139.41, 

7 138.58, 137.78, 136.59, 134.84, 127.66, 127.38, 126.94, 125.11, 124.97, 119.86, 

8 119.67, 119.54, 15.40. (Figure S1)
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10 Synthesis of 9-hexylidene-9H-fluorene (HDF)

11
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12 The hexylmagnesium bromide A was synthesized via Grignard reaction and prepared 

13 1 M solution in dry tetrahydrofuran (THF). 9-Fluorenone (9.0 g, 0.05 mol) was 

14 completely dissolved in 150 mL dry THF with continuous ventilate of nitrogen. Then, 

15 monomer A (1M, 60 mL) was placed in dropping funnel and dripped into solution 

16 slowly. The temperature of reaction was controlled at 20 ℃. After dropping, the reacted 

17 solution was quenched by NH4Cl saturated aqueous solution. The oil phase was dried 

18 with MgSO4 and removed solvent in vacuum. Finally, the monomer B was purified via 



1 column chromatography (hexanes: ethyl acetate =10 :1) to obtain white solid (10.2 g, 

2 76.7% yield). 

3 The monomer B (2.7 g, 0.01 mol) was dissolved in 100 mL dichloromethane (DCM) 

4 with 1.3 mL CH3COOH. Then, excessive HCl aqueous solution (12 M, 10 mL) was 

5 dripped with continuous stir at room temperature. After dropping, the solution was 

6 heated to 60 ℃ overnight. The reacted solution was neutralized with NaHCO3, and then 

7 oil phase was separated for further purification via column chromatography (hexanes: 

8 DCM =20 :1) to obtain white solid (2.1 g, 84.8% yield). 1H NMR (500 MHz, CDCl3, 

9 ppm) δ 7.94 (d, 1H), 7.83 (d, 1H), 7.78-7.72 (m, 2H), 7.45-7.32 (m, 4H), 6.81 (t, 1H), 

10 2.91 (m, 2H), 1.76 (m, 2H), 1.50 (m, 4H), 1.01 (t, 3H). 13C NMR (125 MHz, CDCl3, 

11 ppm) δ 140.83, 139.48, 138.59, 137.64, 135.37, 131.39, 127.64, 127.35, 126.92, 

12 129.87, 124.98, 119.83, 119.70, 119.51, 31.86, 29.80, 29.42, 22.79, 14.16. (Figure S2)
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14 Synthesis of 9-dodecylidene-9H-fluorene (DDF)

15
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16 The dodecylmagnesium bromide A was synthesized via Grignard reaction which 

17 referred to literature2 and prepared 1 M solution in dry THF. 9-Fluorenone (9.0 g, 0.05 

18 mol) was completely dissolved in 150 mL dry THF with continuous ventilate of 



1 nitrogen. Then, monomer A (1M, 60 mL) was placed in dropping funnel and dripped 

2 into solution slowly. The temperature of reaction was controlled at 20 ℃. After 

3 dropping, the reacted solution was quenched by NH4Cl saturated aqueous solution. The 

4 oil phase was dried with MgSO4 and removed solvent in vacuum. Finally, the monomer 

5 B was purified via column chromatography (hexanes: ethyl acetate =10 :1) to obtain 

6 yellow solid (14.6 g, 83.4% yield). 

7 The monomer B (3.4 g, 0.01 mol) was dissolved in 100 mL DCM with 1.3 mL 

8 CH3COOH. Then, excessive HCl aqueous solution (12 M, 10 mL) was dripped with 

9 continuous stir at room temperature. After dropping, the solution was heated to 60 ℃ 

10 overnight. The reacted solution was neutralized with NaHCO3, and then oil phase was 

11 separated for further purification via column chromatography (hexanes: DCM =20 :1) 

12 to obtain white solid (2.7 g, 81.8% yield). 1H NMR (500 MHz, CDCl3, ppm) δ 7.99-

13 7.61 (m, 4H), 7.46-7.24 (m, 4H), 6.78 (t, 1H), 2.87 (m, 2H), 1.71 (m, 2H), 1.55-1.20 

14 (m, 16H), 0.90 (t, 3H). 13C NMR (125 MHz, CDCl3, ppm) δ 140.85, 139.50, 138.62, 

15 137.66, 135.39, 131.40, 127.65, 127.36, 126.93, 126.88, 125.01, 119.85, 119.72, 

16 119.53, 32.05, 29.80, 29.78, 29.73, 29.68, 29.50, 22.83, 14.26. (Figure S3)
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18 Synthesis of model polymers (Route Ⅰ: fluorene-type and N-methyl-4-piperidone)
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20

21 EDF-MP. The N-methyl-4-piperidone (0.17 g, 1.5 mmol) and EDF (0.20 g, 1.0 



1 mmol) were added into a pressure bottle with 1 mL dry dichloromethane as solvent. 

2 Then, 0.2 mL TFA and 0.8 mL TFSA were added into system as catalysts when the 

3 temperature was reduced to 0 ℃. After 12 h of polymerization, the mixture was poured 

4 into water to precipitate the polymer. The solid was dried via lyophilization to obtain 

5 0.30 g as yellow powder.

6 HDF-MP. The N-methyl-4-piperidone (0.17 g, 1.5 mmol) and HDF (0.25 g, 1.0 

7 mmol) were added into a pressure bottle with 1 mL dry dichloromethane as solvent. 

8 Then, 0.2 mL TFA and 0.8 mL TFSA were added into system as catalysts when the 

9 temperature was reduced to 0 ℃. After 12 h of polymerization, the mixture was poured 

10 into water to precipitate the polymer. The solid was dried via lyophilization to obtain 

11 0.33 g as yellow powder.

12 DDF-MP. The N-methyl-4-piperidone (0.17 g, 1.5 mmol) and DDF (0.33 g, 1.0 

13 mmol) were added into a pressure bottle with 1 mL dry dichloromethane as solvent. 

14 Then, 0.2 mL TFA and 0.8 mL TFSA were added into system as catalysts when the 

15 temperature was reduced to 0 ℃. After 12 h of polymerization, the mixture was poured 

16 into water to precipitate the polymer. The solid was dried via lyophilization to obtain 

17 0.41 g as yellow powder.

18

19 Synthesis of model polymers (Route Ⅱ: fluorene-type and biphenyl)
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1 EDF-BP. The biphenyl (0.16 g, 1.0 mmol) and EDF (0.19 g, 1.0 mmol) were added 

2 into a pressure bottle with 1 mL dry dichloromethane as solvent. Then, 1 mL TFSA 

3 was added into system as catalysts when the temperature was reduced to 0 ℃. After 12 

4 h of polymerization, the mixture was poured into water and neutralized with NaHCO3. 

5 After removing extra solvent in vacuum, the final product 0.28 g was obtained as brown 

6 solid. 

7 HDF-BP. The biphenyl (0.16 g, 1.0 mmol) and HDF (0.25 g, 1.0 mmol) were added 

8 into a pressure bottle with 1 mL dry dichloromethane as solvent. Then, 1 mL TFSA 

9 was added into system as catalysts when the temperature was reduced to 0 ℃. After 12 

10 h of polymerization, the mixture was poured into water and neutralized with NaHCO3. 

11 After removing extra solvent in vacuum, the final product 0.37 g was obtained as brown 

12 liquid. 

13 DDF-BP. The biphenyl (0.16 g, 1.0 mmol) and DDF (0.33 g, 1.0 mmol) were added 

14 into a pressure bottle with 1 mL dry dichloromethane as solvent. Then, 1 mL TFSA 

15 was added into system as catalysts when the temperature was reduced to 0 ℃. After 12 

16 h of polymerization, the mixture was poured into water and neutralized with NaHCO3. 

17 After removing extra solvent in vacuum, the final product 0.44 g was obtained as brown 

18 liquid.

19

20 Synthesis of model polymers (Route Ⅲ: fluorene-type and itself)
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2 EDF-EDF. The EDF (0.38 g, 2.0 mmol) were added into a pressure bottle with 1 mL 

3 dry dichloromethane as solvent. Then, 1 mL TFSA was added into system as catalysts 

4 when the temperature was reduced to 0 ℃. After 12 h of polymerization, the mixture 

5 was poured into water and neutralized with NaHCO3. After removing extra solvent in 

6 vacuum, the final product 0.33 g was obtained as brown solid.

7 HDF-HDF. The HDF (0.37 g, 1.5 mmol) were added into a pressure bottle with 1 

8 mL dry dichloromethane as solvent. Then, 1 mL TFSA was added into system as 

9 catalysts when the temperature was reduced to 0 ℃. After 12 h of polymerization, the 

10 mixture was poured into water and neutralized with NaHCO3. After removing extra 

11 solvent in vacuum, the final product 0.36 g was obtained as brown liquid.

12 DDF-DDF. The EDF (0.33 g, 1.0 mmol) were added into a pressure bottle with 1 

13 mL dry dichloromethane as solvent. Then, 1 mL TFSA was added into system as 

14 catalysts when the temperature was reduced to 0 ℃. After 12 h of polymerization, the 

15 mixture was poured into water and neutralized with NaHCO3. After removing extra 

16 solvent in vacuum, the final product 0.3 g was obtained as brown liquid.
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2 Figure S1 (a) 1H NMR spectra and (b) 13C NMR spectra of monomer 9-ethylidene-9H-

3 fluorene in CDCl3.
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2 Figure S2 (a) 1H NMR spectra and (b) 13C NMR spectra of monomer 9-hexylidene-

3 9H-fluorene in CDCl3.
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2 Figure S3 (a) 1H NMR spectra and (b) 13C NMR spectra of monomer 9-dodecylidene-

3 9H-fluorene in CDCl3.
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2 Figure S4 The synthetic procedure and chemical structure of poly(piperidinium-co- 

3 dimethylfluorene) which used as fuel cell binder.



1

2 Figure S5 (a) 1H NMR spectroscopy of model polymers EDF-MP, HDF-MP and DDF-

3 MP in d6-DMSO. The 5 wt% TFA to move water peak from 3.3 ppm to 11−14 ppm. 

4 (b) 1H NMR spectroscopy of EDF-EDF, HDF-HDF and DDF-DDF in CDCl3.



1

2 Figure S6 The IR spectra of (a) monomer DDF and polymer DDF-MP, (b) monomer 

3 EDF and polymer EDF-MP and (c) monomer HDF and polymer HDF-MP.
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1

2 Figure S7 The MS analysis of (a) EDF-EDF self-polymerization and (b) reaction of 

3 EDF and biphenyl. 
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1

2 Figure S8 The MS analysis of (a) DDF-DDF self-polymerization and (b) reaction of 

3 DDF and biphenyl. 
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3 Figure S9 (a) The picture of model polymer PPTEF-QA-2.5 membrane and (b) The 

4 picture of model polymer PPTEF-QA-2.5 membrane in OH- form.
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2 Figure S10 1H NMR spectroscopy of (a) PPTDF-QA-2.5 and (b) PPTDF-2.5 in d6-

3 DMSO with 5 wt% TFA to move water peak from 3.3 ppm to 11-14 ppm.
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2 Figure S11 The 1H NMR spectra of (a) PPTDF-1, (b) PPTDF-2.5 and (c) PPTDF-5 

3 membrane in d6-DMSO. 5 wt% TFA was added to move water peak from 3.3 ppm to 

4 11-14 ppm.
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2 Figure S12 The 1H NMR spectra of (a) PPTF-QA-5 and (b) PPTF-QA-10 membrane 

3 in d6-DMSO. 5 wt% TFA was added to move water peak from 3.3 ppm to 11-14 ppm.

4

5

6 Figure S13 The TGA curves of PPTDF-QA-x membranes.
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2 Figure S14 (a) and (b) In situ impedance curves of the MEAs with different PPT-QAs 

3 at 200 mA cm−2.

4

5 Table S1. Polymerization of poly(arylene piperidinium)-based copolymers.

Samples a TFSA: 

DCM

Piperidone: TP: 

(EDF/HDF/DDF)

Polymerization 

time b (h)

[η] c

(dL g−1)

Yield

(%)

PPT-QA 1:1 100:100:0 12 2.13 90.5

PPTDF-QA-1 1:1 100:99:1 6 5.71 91.2

PPTDF-QA-2.5 1:1 101:98:2.5 3 6.46 87.9

PPTDF-QA-2.5 1:1 101:98:2.5 6 ─ 93.3

PPTDF-QA-5 1:1 100:95:5 1 ─ 89.5

PPTDF-QA-5 1:2 100:95:5 3 ─ 92.4

PPTEF-QA-2.5 1:1 101:98:2.5 3 2.66 91.5

PPTHF-QA-2.5 1:1 101:98:2.5 3 5.05 89.1

PPTF-QA-5 1:1 100:95:5 12 ─ 91

PPTF-QA-10 1:1 100:90:10 12 ─ 95.1



1 a The PPTDF represents the components of piperidone, TP and DDF; PPTEF represents 

2 the components of piperidone, TP and EDF; PPTHF represents the components of 

3 piperidone, TP and HDF. b The solid content is 25%. c Measured at a concentration of 

4 0.5 g dL−1 in DMSO at 30 °C.

5

6 Table S2. The mechanical properties of branched PPT-QAs with different chain length

Membranes Tensile strength 

(MPa)

Elongation at 

break (%)

Young’s modulus 

(MPa)

PPTDF-QA-2.5 70.0 35 1670

PPTHF-QA-2.5 29.0 5.7 655

PPTEF-QA-2.5 15.8 3.4 613

7

8 Table S3. Properties of PPTDF-QA-2.5 and other poly(arylene piperidinium)-based 

9 AEMs.

Samples IECtheor

(mmol g−1)

SR a

(%)

σOH
- a

(mS cm−1)

Tensile strength 

(MPa)

Thickness in 

FC b (μm)

Ref.

PPTDF-QA-2.5 2.77 24 162 70 8 This work

PPTDF-QA-5 2.76 25 168 54.3 25 This work

PFTP-13 2.81 20 176 85 20 ± 3 3

PQP-100 2.30 22 119 84 4 4

PAP-TP-85 2.37 10 170 67 25 5

b-PTP-2.5 2.81 26 147 62 20 6



PD6TP-15 2.35 42 155 48 22 ± 3 7

PTP-90 2.52 15 129 29 ─ 8

PDTP-25 2.54 30 121 61 25 ± 3 9

PFTP@W-PE 2.35 7 72 121 10 10

1 a Measured at 80 °C. b The minimum thickness tested in fuel cell.
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