Supporting Information

2

1

³ High-strength, ultra-thin anion exchange ⁴ membranes with branched structure toward ⁵ alkaline membrane fuel cells

- 6 Xiaofeng Li^{a,b}, Bin Zhang^{a,b}, Jing Guo^a, Yaohan Chen^a, Lei Dai^a, Jifu Zheng^{a,*},
- 7 Shenghai Li^{a,b,*}, Suobo Zhang^{a,b}
- 8
- 9 ^a Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry,
- 10 Chinese Academy of Sciences, Changchun, 130022, China
- ¹¹ ^b University of Science and Technology of China, Hefei, 230026, China
- 12
- ¹³ * Corresponding author email: jfzheng@ciac.ac.cn (J. Z.); lsh@ciac.ac.cn (S. L.)
- 14

1 Synthesis of 9-ethylidene-9H-fluorene (EDF)

9

10 Synthesis of 9-hexylidene-9H-fluorene (HDF)

The hexylmagnesium bromide **A** was synthesized via Grignard reaction and prepared 13 1 M solution in dry tetrahydrofuran (THF). 9-Fluorenone (9.0 g, 0.05 mol) was 14 completely dissolved in 150 mL dry THF with continuous ventilate of nitrogen. Then, 15 monomer **A** (1M, 60 mL) was placed in dropping funnel and dripped into solution 16 slowly. The temperature of reaction was controlled at 20 °C. After dropping, the reacted 17 solution was quenched by NH₄Cl saturated aqueous solution. The oil phase was dried 18 with MgSO₄ and removed solvent in vacuum. Finally, the monomer **B** was purified via

column chromatography (hexanes: ethyl acetate =10 :1) to obtain white solid (10.2 g,
 76.7% yield).

3 The monomer **B** (2.7 g, 0.01 mol) was dissolved in 100 mL dichloromethane (DCM) with 1.3 mL CH₃COOH. Then, excessive HCl aqueous solution (12 M, 10 mL) was 4 dripped with continuous stir at room temperature. After dropping, the solution was 5 heated to 60 °C overnight. The reacted solution was neutralized with NaHCO₃, and then 6 oil phase was separated for further purification via column chromatography (hexanes: 7 DCM =20 :1) to obtain white solid (2.1 g, 84.8% yield). ¹H NMR (500 MHz, CDCl₃, 8 ppm) & 7.94 (d, 1H), 7.83 (d, 1H), 7.78-7.72 (m, 2H), 7.45-7.32 (m, 4H), 6.81 (t, 1H), 9 2.91 (m, 2H), 1.76 (m, 2H), 1.50 (m, 4H), 1.01 (t, 3H). ¹³C NMR (125 MHz, CDCl₃, 10 ppm) § 140.83, 139.48, 138.59, 137.64, 135.37, 131.39, 127.64, 127.35, 126.92, 11 12 129.87, 124.98, 119.83, 119.70, 119.51, 31.86, 29.80, 29.42, 22.79, 14.16. (Figure S2) 13

14 Synthesis of 9-dodecylidene-9H-fluorene (DDF)

The dodecylmagnesium bromide **A** was synthesized via Grignard reaction which referred to literature² and prepared 1 M solution in dry THF. 9-Fluorenone (9.0 g, 0.05 mol) was completely dissolved in 150 mL dry THF with continuous ventilate of

nitrogen. Then, monomer A (1M, 60 mL) was placed in dropping funnel and dripped
into solution slowly. The temperature of reaction was controlled at 20 °C. After
dropping, the reacted solution was quenched by NH₄Cl saturated aqueous solution. The
oil phase was dried with MgSO₄ and removed solvent in vacuum. Finally, the monomer
B was purified via column chromatography (hexanes: ethyl acetate =10 :1) to obtain
yellow solid (14.6 g, 83.4% yield).

The monomer B (3.4 g, 0.01 mol) was dissolved in 100 mL DCM with 1.3 mL 7 CH₃COOH. Then, excessive HCl aqueous solution (12 M, 10 mL) was dripped with 8 continuous stir at room temperature. After dropping, the solution was heated to 60 °C 9 overnight. The reacted solution was neutralized with NaHCO₃, and then oil phase was 10 separated for further purification via column chromatography (hexanes: DCM =20:1) 11 to obtain white solid (2.7 g, 81.8% yield). ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.99-12 7.61 (m, 4H), 7.46-7.24 (m, 4H), 6.78 (t, 1H), 2.87 (m, 2H), 1.71 (m, 2H), 1.55-1.20 13 (m, 16H), 0.90 (t, 3H). ¹³C NMR (125 MHz, CDCl₃, ppm) δ 140.85, 139.50, 138.62, 14 137.66, 135.39, 131.40, 127.65, 127.36, 126.93, 126.88, 125.01, 119.85, 119.72, 15 16 119.53, 32.05, 29.80, 29.78, 29.73, 29.68, 29.50, 22.83, 14.26. (Figure S3)

17

18 Synthesis of model polymers (Route I: fluorene-type and *N*-methyl-4-piperidone)

21 EDF-MP. The N-methyl-4-piperidone (0.17 g, 1.5 mmol) and EDF (0.20 g, 1.0

1 mmol) were added into a pressure bottle with 1 mL dry dichloromethane as solvent.
2 Then, 0.2 mL TFA and 0.8 mL TFSA were added into system as catalysts when the
3 temperature was reduced to 0 °C. After 12 h of polymerization, the mixture was poured
4 into water to precipitate the polymer. The solid was dried via lyophilization to obtain
5 0.30 g as yellow powder.

HDF-MP. The *N*-methyl-4-piperidone (0.17 g, 1.5 mmol) and HDF (0.25 g, 1.0
mmol) were added into a pressure bottle with 1 mL dry dichloromethane as solvent.
Then, 0.2 mL TFA and 0.8 mL TFSA were added into system as catalysts when the
temperature was reduced to 0 °C. After 12 h of polymerization, the mixture was poured
into water to precipitate the polymer. The solid was dried via lyophilization to obtain
0.33 g as yellow powder.

DDF-MP. The *N*-methyl-4-piperidone (0.17 g, 1.5 mmol) and DDF (0.33 g, 1.0 mmol) were added into a pressure bottle with 1 mL dry dichloromethane as solvent. Then, 0.2 mL TFA and 0.8 mL TFSA were added into system as catalysts when the temperature was reduced to 0 °C. After 12 h of polymerization, the mixture was poured into water to precipitate the polymer. The solid was dried via lyophilization to obtain 0.41 g as yellow powder.

18

19 Synthesis of model polymers (Route II: fluorene-type and biphenyl)

EDF-BP. The biphenyl (0.16 g, 1.0 mmol) and EDF (0.19 g, 1.0 mmol) were added
into a pressure bottle with 1 mL dry dichloromethane as solvent. Then, 1 mL TFSA
was added into system as catalysts when the temperature was reduced to 0 °C. After 12
h of polymerization, the mixture was poured into water and neutralized with NaHCO₃.
After removing extra solvent in vacuum, the final product 0.28 g was obtained as brown
solid.

HDF-BP. The biphenyl (0.16 g, 1.0 mmol) and HDF (0.25 g, 1.0 mmol) were added
into a pressure bottle with 1 mL dry dichloromethane as solvent. Then, 1 mL TFSA
was added into system as catalysts when the temperature was reduced to 0 °C. After 12
h of polymerization, the mixture was poured into water and neutralized with NaHCO₃.
After removing extra solvent in vacuum, the final product 0.37 g was obtained as brown
liquid.

DDF-BP. The biphenyl (0.16 g, 1.0 mmol) and DDF (0.33 g, 1.0 mmol) were added into a pressure bottle with 1 mL dry dichloromethane as solvent. Then, 1 mL TFSA was added into system as catalysts when the temperature was reduced to 0 °C. After 12 h of polymerization, the mixture was poured into water and neutralized with NaHCO₃. After removing extra solvent in vacuum, the final product 0.44 g was obtained as brown liquid.

19

20 Synthesis of model polymers (Route III: fluorene-type and itself)

EDF-EDF. The EDF (0.38 g, 2.0 mmol) were added into a pressure bottle with 1 mL
dry dichloromethane as solvent. Then, 1 mL TFSA was added into system as catalysts
when the temperature was reduced to 0 °C. After 12 h of polymerization, the mixture
was poured into water and neutralized with NaHCO₃. After removing extra solvent in
vacuum, the final product 0.33 g was obtained as brown solid.

HDF-HDF. The HDF (0.37 g, 1.5 mmol) were added into a pressure bottle with 1 mL dry dichloromethane as solvent. Then, 1 mL TFSA was added into system as catalysts when the temperature was reduced to 0 °C. After 12 h of polymerization, the mixture was poured into water and neutralized with NaHCO₃. After removing extra solvent in vacuum, the final product 0.36 g was obtained as brown liquid.

12 *DDF-DDF*. The EDF (0.33 g, 1.0 mmol) were added into a pressure bottle with 1 13 mL dry dichloromethane as solvent. Then, 1 mL TFSA was added into system as 14 catalysts when the temperature was reduced to 0 °C. After 12 h of polymerization, the 15 mixture was poured into water and neutralized with NaHCO₃. After removing extra 16 solvent in vacuum, the final product 0.3 g was obtained as brown liquid.

2 Figure S1 (a) ¹H NMR spectra and (b) ¹³C NMR spectra of monomer 9-ethylidene-9H-

3 fluorene in $CDCl_3$.

2 Figure S2 (a) ¹H NMR spectra and (b) ¹³C NMR spectra of monomer 9-hexylidene-

3 9*H*-fluorene in CDCl₃.

0 a0

2 Figure S3 (a) ¹H NMR spectra and (b) ¹³C NMR spectra of monomer 9-dodecylidene-

3 9*H*-fluorene in CDCl₃.

2 Figure S4 The synthetic procedure and chemical structure of poly(piperidinium-co-

3 dimethylfluorene) which used as fuel cell binder.

2 Figure S5 (a) ¹H NMR spectroscopy of model polymers EDF-MP, HDF-MP and DDF-

3 MP in d_6 -DMSO. The 5 wt% TFA to move water peak from 3.3 ppm to 11–14 ppm.

4 (b) ¹H NMR spectroscopy of EDF-EDF, HDF-HDF and DDF-DDF in CDCl₃.

2 Figure S6 The IR spectra of (a) monomer DDF and polymer DDF-MP, (b) monomer

3 EDF and polymer EDF-MP and (c) monomer HDF and polymer HDF-MP.

Exact Mass: 1521.73

Bruker Daltonics flexAnalysis

2 Figure S7 The MS analysis of (a) EDF-EDF self-polymerization and (b) reaction of

3 EDF and biphenyl.

Bruker Daltonics flexAnalysis

2 Figure S8 The MS analysis of (a) DDF-DDF self-polymerization and (b) reaction of

3 DDF and biphenyl.

1

3 Figure S9 (a) The picture of model polymer PPTEF-QA-2.5 membrane and (b) The

4 picture of model polymer PPTEF-QA-2.5 membrane in OH⁻ form.

3 DMSO with 5 wt% TFA to move water peak from 3.3 ppm to 11-14 ppm.

2 Figure S11 The ¹H NMR spectra of (a) PPTDF-1, (b) PPTDF-2.5 and (c) PPTDF-5

- 3 membrane in d_6 -DMSO. 5 wt% TFA was added to move water peak from 3.3 ppm to
- 4 11-14 ppm.

2 Figure S12 The ¹H NMR spectra of (a) PPTF-QA-5 and (b) PPTF-QA-10 membrane
3 in *d*₆-DMSO. 5 wt% TFA was added to move water peak from 3.3 ppm to 11-14 ppm.

5

6 Figure S13 The TGA curves of PPTDF-QA-x membranes.

Figure S14 (a) and (b) In situ impedance curves of the MEAs with different PPT-QAs
at 200 mA cm⁻².

5 Table S1. Polymerization of poly(arylene piperidinium)-based copolymers.

Samples ^a	TFSA:	Piperidone: TP: Polymerization		[η] ^{<i>c</i>}	Yield
	DCM	(EDF/HDF/DDF) time b (h)		$(dL g^{-1})$	(%)
PPT-QA	1:1	100:100:0	12	2.13	90.5
PPTDF-QA-1	1:1	100:99:1	6	5.71	91.2
PPTDF-QA-2.5	1:1	101:98:2.5	3	6.46	87.9
PPTDF-QA-2.5	1:1	101:98:2.5	6	_	93.3
PPTDF-QA-5	1:1	100:95:5	1	_	89.5
PPTDF-QA-5	1:2	100:95:5	3	_	92.4
PPTEF-QA-2.5	1:1	101:98:2.5	3	2.66	91.5
PPTHF-QA-2.5	1:1	101:98:2.5	3	5.05	89.1
PPTF-QA-5	1:1	100:95:5	12	_	91
PPTF-QA-10	1:1	100:90:10	12	_	95.1

^a The PPTDF represents the components of piperidone, TP and DDF; PPTEF represents
 the components of piperidone, TP and EDF; PPTHF represents the components of
 piperidone, TP and HDF. ^b The solid content is 25%. ^c Measured at a concentration of
 0.5 g dL⁻¹ in DMSO at 30 °C.

5

6 **Table S2.** The mechanical properties of branched PPT-QAs with different chain length

Membranes	Tensile strength	Elongation at	Young's modulus	
	(MPa)	break (%)	(MPa)	
PPTDF-QA-2.5	70.0	35	1670	
PPTHF-QA-2.5	29.0	5.7	655	
PPTEF-QA-2.5	15.8	3.4	613	

7

8 Table S3. Properties of PPTDF-QA-2.5 and other poly(arylene piperidinium)-based

9 AEMs.

Samples	IEC _{theor}	SR ^a	σ_{OH}^{-a}	Tensile strength	Thickness in	Ref.
	$(mmol g^{-1})$	(%)	$(mS \ cm^{-1})$	(MPa)	FC ^b (µm)	
PPTDF-QA-2.5	2.77	24	162	70	8	This work
PPTDF-QA-5	2.76	25	168	54.3	25	This work
PFTP-13	2.81	20	176	85	20 ± 3	3
PQP-100	2.30	22	119	84	4	4
PAP-TP-85	2.37	10	170	67	25	5
b-PTP-2.5	2.81	26	147	62	20	6

PD ₆ TP-15	2.35	42	155	48	22 ± 3	7
PTP-90	2.52	15	129	29	-	8
PDTP-25	2.54	30	121	61	25 ± 3	9
PFTP@W-PE	2.35	7	72	121	10	10

¹ ^{*a*} Measured at 80 °C. ^{*b*} The minimum thickness tested in fuel cell.

3 **Reference**

- 4 1 K. S. Reddy, L. Solà, A. Moyano, M. A. Pericàs and A. Riera, Synthesis, 2000, 1,
- 5 165-176.
- 6 2 H. M. Zhang, Z. M. Gong, K. W. Sun, R. M. Duan, P. H. Ji, L. Li, C. Li, K. Müllen
- 7 and L. F. Chi, J. Am. Chem. Soc., 2016, 138, 11743–11748.
- 8 3 N. Chen, H. H. Wang, S. P. Kim, H. M. Kim, W. H. Lee, C. Hu, J. Y. Bae, E. S. Sim,
- 9 Y. C. Chung, J. H. Jang, S. J. Yoo, Y. Zhuang and Y. M. Lee, *Nat Commun.*, 2021,
- 10 **12**, 2367.
- 11 4 M. Liu, X. Hu, B. Hu, L. Liu and N. Li, J. Membr. Sci., 2022, 642, 119966.
- 12 5 J. Wang, Y. Zhao, B. P. Setzler, S. Rojas-Carbonell, C. Ben Yehuda, A. Amel, M.
- 13 Page, L. Wang, K. Hu, L. Shi, S. Gottesfeld, B. Xu and Y. Yan, Nat. Energy, 2019,
- 14 **4**, 392–398.
- 15 6 X. Y. Wu, N. J. Chen, H. A. Klok, Y. M. Lee and X. L. Hu, *Angew. Chem. Int. Ed.*,
 2021, e202114892.
- 17 7 C. Hu, J. H. Park, H. M. Kim, H. H. Wang, J. Y. Bae, N. Y. Kang, N. Chen and Y.
- 18 M. Lee, J. Membr. Sci., 2022, 647, 120341.

²

- 1 8 X. Hu, Y. Huang, L. Liu, Q. Ju, X. Zhou, X. Qiao, Z. Zheng and N. Li, J. Membr.
- 2 *Sci.*, 2021, **621**, 118964.
- 3 9 N. Chen, C. Hu, H. H. Wang, S. P. Kim, H. M. Kim, W. H. Lee, J. Y. Bae, J. H. Park
- 4 and Y. M. Lee, *Angew Chem Int Ed.*, 2021, **60**, 7710-7718.
- 5 10 H. H. Wang, C. Hu, J. H. Park, H. M. Kim, N. Y. Kang, J. Y. Bae, W. H. Lee, N.
- 6 Chen and Y. M. Lee, J. Membr. Sci., 2022, 644, 120160.