Supporting Information

Decreased Spin-resolved Anti-bonding States Filling to Accelerate CHO Conversion to CH₂O in Transitional Metals Doped Mo₂C Monolayer during CO₂ Reduction

Liu Guo¹, Rui Li¹, Jiawei Jiang¹, Xueping Fan¹, Ji-Jun Zou², Wenbo Mi^{1,*}

¹ Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China

² Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

^{*}Author to whom all correspondence should be addressed.

E-mail: miwenbo@tju.edu.cn

Species	$E_{\rm DFT}~({\rm eV})$	$E_{\rm ZPE}~({\rm eV})$	TS (eV)
CO_2	-23.02	0.31	0.65
H_2	-6.78	0.27	0.42
H_2O	-14.23	0.58	0.65

Table S1 The total energy (E_{DFT} , eV), zero-point energy (E_{ZPE} , eV) and entropy (TS, eV) of CO₂, H₂ and CO₂.

Fig. S1. Top and side views for optimized structures of TM-doped Mo₂C (TM=Tc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu

and Zn).

Fig. S2. The formation energies of TM-doped Mo₂C (TM=Tc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn).

TM-Mo ₂ C	Sc	Ti	V	Cr	Mn
<i>a</i> = <i>b</i> (Å)	12.12	12.10	12.10	12.10	12.07
<i>d</i> мо-с (Å)	2.09	2.09	2.09	2.09	2.10
$d_{ ext{TM-C}}$ (Å)	2.34	2.13	2.13	2.24	1.97
TM (μ _B)	0	-0.061	1.992	-0.247	-0.102
Magnetic moment (µB)	2.88	2.40	5.54	3.73	4.34
TM-Mo ₂ C	Fe	Co	Ni	Cu	Zn
<i>a=b</i> (Å)	12.07	12.07	12.07	12.07	12.04
$d_{ ext{Mo-C1}}$ (Å)	2.09	2.10	2.10	2.09	2.07
$d_{ ext{TM-C1}}$ (Å)	1.96	2.05	1.96	2.17	2.57
TM	-0.57	1.91	0.02	-0.004	-0.001
Magnetic moment (μ_B)	2.83	4.55	2.69	1.97	1.82

Table S2 The lattice parameters (a=b), bond length of Mo-C/TM-C (d_{Mo-C}/d_{TM-C}) and the magnetic moments of TM and TM-Mo₂C (TM=Tc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn).

Fig. S3. The band st the energy of isolated TM atom (TM=Tc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn).

Fig. S4. The partial density of states of TM-doped Mo₂C (TM=Tc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn).

Table S3 The total energies of *H-Mo₂C, *OH-Mo₂C, *H₂O-Mo₂C and *CO₂-Mo₂C E_{total} (eV), the adsorption energies of H, OH, H₂O and CO₂ E_{ads} (eV) and the gibbs free energies of *H, *OH, *H₂O and CO₂ ΔG (eV)

	E _{total}	Eads	ΔG
*H-Mo ₂ C	-371.19	-1.75	-1.79
*OH-Mo ₂ C	-379.01	-2.12	-1.72
*H ₂ O-Mo ₂ C	-381.94	-1.66	-1.21
*CO ₂ -Mo ₂ C	-391.14	0.43	0.90

Fig. S5. Top and side views of optimized structure for (a) H, (b) OH and (c) H₂O adsorbed on the bridge sites of pure Mo₂C.

Charge Transfer	Mo ₂ C	Cr-Mo ₂ C	Mn-Mo ₂ C	Fe-Mo ₂ C	Co-Mo ₂ C	Ni-Mo ₂ C	Cu-Mo ₂ C
Мо	0.72	-1.08	-1.09	-1.12	-1.12	-1.14	-1.13
				-0.41	-0.39	-0.27	-0.22
TM	-0.75	-1.03	-1.02				
				-1.12	-1.12	-1.14	-1.23
С	-1.21	-1.22	-1.24	-1.23	-1.22	-1.08	-1.22
01	1.08	1.12	1.14	1.09	1.09	1.08	1.08
O2	1.08	1.06	1.06	1.09	1.09	1.07	1.08

Table S4 The charge transfer of each element for pure Mo_2C and $TM-Mo_2C$ (TM=Cr, Mn, Fe, Co, Ni, and Cu)with CO_2 adsorbed over the bridge active sites.

Table S5 The gibbs free energy (ΔG , eV), adsorbed energy (ΔE_{DFT} , eV), entropy (ΔTS , eV) and zero-point energy (ΔE_{ZPE} , eV) corrections in determining the free energy of intermediates adsorbed on pure Mo₂C and TM-Mo₂C (TM= Cr, Mn, Fe, Co, Ni, and Cu).

		Path way	⊿G	ΔE_{DFT}	ΔE_{ZPE}	ΔTS
Mo ₂ C	1	*H	0.90	0.43	-0.01	-0.48
	2	*CO ₂ →*COOH	0.19	-0.16	0.16	-0.19
	3	*СООН→*СО	-0.45	-0.07	0.02	0.40
	4	*СО→*СНО	0.16	-0.23	0.15	-0.25
	4	*СО→*СОН	0.46	0.13	0.14	-0.19
	_	*СНО→*СНОН	1.36	1.00	0.16	-0.20
	5	$*CHO \rightarrow *CH_2O$	3.00	2.86	-0.02	-0.16
	ć	*CHOH→*CH ₂ OH	-0.28	-0.65	0.19	-0.18
	6	$*CH_2O \rightarrow *CH_2OH$	-1.91	-2.50	0.38	-0.21
	7	$^{*}CH_{2}OH \rightarrow ^{*}CH_{2}$	-4.48	-4.08	-0.05	0.35
	8	$*CH_2 \rightarrow *CH_3$	-0.17	-0.51	0.15	-0.19
	9	$*CH_3 \rightarrow *CH_4$	0.51	0.27	0.20	-0.04

		Path way	$\varDelta G$	ΔE_{DFT}	ΔE_{ZPE}	ΔTS
Fe-Mo ₂ C	1	*CO ₂	-0.86	-1.35	0.00	-0.49
	2	*CO ₂ →*COOH	0.66	0.32	0.17	-0.17
	3	*СООН→*СО	-0.77	-0.44	0.03	0.36
	4	*СО→*СНО	0.41	0.09	0.09	-0.23
	-	*СНО→*СНОН	0.43	0.05	0.19	-0.19
	5	*CHO→*CH ₂ O	-1.40	-1.76	0.17	-0.19
	ſ	*СНОН→*СН₂ОН	-0.15	-0.51	0.17	-0.19
	6	$*CH_2O \rightarrow *CH_2OH$	1.68	1.30	0.19	-0.18
	7	$^{*}\mathrm{CH}_{2}\mathrm{OH}{\rightarrow}^{*}\mathrm{CH}_{2}$	-0.72	-0.33	-0.02	0.37
	8	$*CH_2 \rightarrow *CH_3$	-0.19	-0.56	0.17	-0.20
	9	$^{*}\mathrm{CH}_{3} \mathrm{\rightarrow} ^{*}\mathrm{CH}_{4}$	0.58	0.32	0.18	-0.08

		Path way	ΔG	ΔE_{DFT}	ΔE_{ZPE}	ΔTS
Co-Mo ₂ C	1	*CO ₂	-0.91	-1.39	0.00	-0.48
	2	*CO ₂ →*COOH	0.58	0.23	0.17	-0.18
	3	*СООН→*СО	-0.56	-0.24	0.03	0.35
	4	*СО→*СНО	0.36	0.14	0.06	-0.16
	_	*СНО→*СНОН	0.85	0.44	0.19	-0.21
	5	*CHO→*CH ₂ O	-0.33	-0.78	0.20	-0.25
		*СНОН→*СН₂ОН	-0.60	-0.98	0.18	-0.20
	6	$*CH_2O \rightarrow *CH_2OH$	0.57	0.24	0.17	-0.16
	7	$^{*}\mathrm{CH}_{2}\mathrm{OH}{\rightarrow}^{*}\mathrm{CH}_{2}$	-0.64	-0.30	-0.01	0.33
	8	$*CH_2 \rightarrow *CH_3$	-0.31	-0.68	0.18	-0.19
	9	$^{*}\mathrm{CH}_{3} \mathrm{\rightarrow} ^{*}\mathrm{CH}_{4}$	0.50	0.34	0.19	0.03

		Path way	$\varDelta G$	ΔE_{DFT}	ΔE_{ZPE}	∆TS
Cu-Mo ₂ C	1	*CO ₂	-0.87	-1.36	0.00	-0.49
	2	*CO ₂ →*COOH	0.57	0.25	0.16	-0.16
	3	*СООН→*СО	-0.54	-0.23	0.03	0.34
	4	*СО→*СНО	0.36	0.13	0.06	-0.17
	-	*СНО→*СНОН	1.10	0.76	0.17	-0.17
	5	*CHO→*CH ₂ O	0.02	-0.43	0.22	-0.23
	<i>.</i>	*СНОН→*СН₂ОН	-0.38	-0.84	0.22	-0.24
	6	$*CH_2O \rightarrow *CH_2OH$	0.69	0.35	0.17	-0.17
	7	$^{*}\mathrm{CH}_{2}\mathrm{OH}{\rightarrow}^{*}\mathrm{CH}_{2}$	-0.74	-0.39	-0.01	0.34
	8	$^{*}CH_{2} \rightarrow ^{*}CH_{3}$	-0.14	-0.47	0.16	-0.17
	9	$^{*}\mathrm{CH}_{3} \mathrm{\rightarrow} ^{*}\mathrm{CH}_{4}$	-0.07	-0.29	0.18	-0.04

		Path way	ΔG	ΔE_{DFT}	ΔE_{ZPE}	∆TS	
Cr-Mo ₂ C	1	*CO ₂	-0.73	-1.20	-0.01	-0.48	
	2	$*CO_2 \rightarrow *COOH$	-1.40	-1.81	0.19	-0.22	
	3	*СООН→*СО	-0.36	0.03	0.00	0.39	
	4	*СО→*СНО	0.38	0.04	0.14	-0.20	

.

5	*СНО→*СНОН	0.36	-0.04	0.17	-0.23	
5	$*CHO \rightarrow *CH_2O$	-0.07	-0.42	0.11	-0.24	
6	$^{*}\mathrm{CHOH}{\rightarrow}^{*}\mathrm{CH}_{2}\mathrm{OH}$	-0.08	-0.44	0.16	-0.20	
0	$*CH_2O \rightarrow *CH_2OH$	0.34	-0.06	0.22	-0.18	
7	$^{*}CH_{2}OH \rightarrow ^{*}CH_{2}$	-0.86	-0.45	-0.03	0.38	
8	$*CH_2 \rightarrow *CH_3$	-0.07	-0.43	0.17	-0.19	
9	$*CH_3 \rightarrow *CH_4$	0.23	-0.06	0.21	-0.08	-

		Path way	$\varDelta G$	ΔE_{DFT}	ΔE_{ZPE}	ΔTS
Mn-Mo ₂ C	1	*CO ₂	-2.50	-2.95	-0.01	-0.46
	2	*CO ₂ →*COOH	0.65	0.30	0.18	-0.17
	3	*СООН→*СО	-1.29	-1.05	-0.54	-0.30
	4	*СО→*СНО	0.23	-0.05	0.07	-0.21
	-	*СНО→*СНОН	0.58	0.22	0.17	-0.19
	5	*CHO→*CH ₂ O	0.12	-0.29	0.17	-0.24
	-	*СНОН→*СН₂ОН	-0.01	-0.47	0.22	-0.24
	6	$*CH_2O \rightarrow *CH_2OH$	0.45	0.05	0.22	-0.18
	7	$^{*}\mathrm{CH}_{2}\mathrm{OH}{\rightarrow}^{*}\mathrm{CH}_{2}$	-0.46	-0.04	-0.04	0.38
	8	$*CH_2 \rightarrow *CH_3$	-0.65	-1.02	0.18	-0.19
	9	$*CH_3 \rightarrow *CH_4$	0.67	0.38	0.20	-0.09

		Path way	⊿G	ΔE_{DFT}	ΔE_{ZPE}	∆TS
Ni-Mo ₂ C	1	*CO ₂	-0.67	-1.13	-0.03	-0.49
	2	*CO ₂ →*COOH	0.53	0.15	0.17	-0.21
	3	*СООН→*СО	-0.60	-0.44	0.24	0.40
	4	*СО→*СНО	0.17	0.11	-0.13	-0.19
	F	*СНО→*СНОН	0.435	-0.005	0.21	-0.23
	2	*CHO→*CH ₂ O	-0.30	-0.74	0.20	-0.24
	<i>(</i>	*CHOH→*CH ₂ OH	-0.23	-0.58	0.17	-0.18
	0	$*CH_2O \rightarrow *CH_2OH$	0.51	0.15	0.18	-0.18

7	$^{*}CH_{2}OH \rightarrow ^{*}CH_{2}$	-0.25	-0.25	0.44	0.44	
8	$^{*}\mathrm{CH}_{2} \mathrm{\rightarrow} ^{*}\mathrm{CH}_{3}$	-0.63	-0.61	-0.29	-0.27	
9	$^{*}\mathrm{CH}_{3} \mathrm{\rightarrow} ^{*}\mathrm{CH}_{4}$	0.61	0.35	0.18	-0.08	_

Fig. S6. The optimized structures and COHP of Mo₂C with CH₂O and CHOH intermediates adsorbed on Mo

atoms.