Unraveling the Li^+ desorption behavior and mechanism of $Li_4Ti_5O_{12}$ with different facets to enhance lithium extraction

Bing Zhao^{a, b}, Yingjun Qiao^a, Zhiqiang Qian^a, Wenfei Wei^{*a}, Jun Li^a, Zhijian Wu^a and Zhong Liu^{*a}

^a Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key

Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of

Sciences, Xining, Qinghai 810008, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author, E-mail address: weiwf@isl.ac.cn; liuzhong@isl.ac.cn

1 Experiments and calculation methods

1.1 Data processing

The adsorption and desorption properties were evaluated by adsorption capacity (q_e), desorption efficiency

(∂), distribution coefficient (K_d), and separation factor (a_{Me}^{Li}), respectively. They were calculated using the following

equations:

$q_e = \frac{(C_0 - C_e)V_1}{m}$	(1)
$\partial = \frac{C_t V_2}{s}$	(2)
$K_d = \frac{(C_0 - C_e) * 1000 * V_1}{C_e * m_1}$	(3)
$a_{Me}^{Li} = \frac{K_d(Li)}{K_d(Me)}$ (Me = Na, K. Rb, Cs)	(4)

where C_0 and C_e (mg/L) are the initial and equilibrium concentrations of Li⁺; C_t (mg/L) represents the concentration of Li⁺ at some times; V₁ and V₂ (L) are the volumes of the LiCl solution and the desorption solution; m (g) and s (mg) denote the amounts of the adsorbent and Li⁺/Ti⁴⁺ in the adsorbent, respectively.

1.2 Model fitting

depicted in Eq. (5) and Eq. (6).

The dates of adsorption isotherms were fitted by the Langmuir, Freundlich models and these equations can be

(5)

Langmuir model: $\frac{C_e}{q_e} = \frac{1}{q_m b} + \frac{C_e}{q_m}$

Freundlich model: $lnq_e = lnK_F + \frac{1}{n}lnC_e$ (6)

where C_e is the equilibrium concentration (mg/L). *b* is the adsorption intensity or Langmuir coefficient related to the affinity of the binding site (L/mg). K_F and 1/*n* are the constants that are related to the adsorption capacity and the adsorption intensity, respectively.

Meanwhile, the Li⁺ adsorption activities on HTO-s were explained by the pseudo-first-order (Eq. (7)) and pseudosecond-order (Eq. (8)) models, these equations were written as: Pseudo-first-order: $q_t = q_e(1 - e^{-K_1 t})$ (7)

Pseudo-second-order:
$$q_t = \frac{K_2 q_e^2 t}{1 + K_2 q_e t}$$
 (8)

Intra-particular diffusion model: $q_t = K_{dif}t^{0.5} + C$ (9)

where q_e and q_t (mg/g) are the amounts of cesium ions absorbed at equilibrium and at time t; and K_1 (min⁻¹) and K_2 (g/mg/min) denote the pseudo-first-order and pseudo-second-order constants. K_{dif} is the intra-particular

diffusion rate constant (mg/g/min^{1/2}).

Fig. S1. The pictures of different solutions recorded during the LSV process: (c) before desorption (pure HCl sloutions) and after desorption (desorption time: 24 h).

Fig. S2. The (a) N_2 ad-desorption isotherms and (b)pore distributions of HTO-s.

Fig. S3. Visualization adsorption experiments with adding different adsorbents (1: without absorbent, 2: HTO-12, 3: HTO-18, 4: HTO-24) with different adsorption times.

Fig. S4. The adsorption curves were fitted by different models: (a) Langmuir, (b) Freundlich, (c) pseudo-first-order and (d) pseudo-second-order models.

Fig. S5. The adsorption selectivity of Li^+ by HTO-s: (a) HTO-18 and (b) HTO-24.

Fig. S6. The dissolution loss of Ti^{4+} in each cycle by HTO-s.

	Intra-particular diffusion							
т	K₁ (mg/g [·] min ^{0.5})	R ²	K₂ (mg/g [∙] min ^{0.5})	R ²	K₃ (mg/g [·] min ^{0.5})	R ²		
HTO-12	1.44	0.96	0.28	0.64	0.03	0.91		
HTO-18	0.95	0.98	0.51	0.95	0.01	0.47		
HTO-24	1.34	0.99	0.93	0.70	0.03	0.75		

Table S1. The Intra-particular diffusion fitting parameters of Li⁺ extraction during the desorption process.

Table S2. The Intra-particular diffusion model fitting parameters of Ti⁴⁺ dissolution during the desorption process.

	Intra-particular diffusion						
т	K₁ (mg/g [·] min ^{0.5})	R ²	K2 (mg/gʻmin ^{0.5})	R ²			
HTO-12	1.54	0.99	0.35	1.00			
HTO-18	1.06	0.97	0.67	1.00			
HTO-24	0.91	0.97	0.75	1.00			

Table S3. The Langmuir and Freundlich models fitting parameters of HTO-s towards Li^+ adsorption.

	l	angmuir model		Freundlich model		
Т	T q _m b R ² (mg/g) (L/mg)		<i>K</i> ⊧ ((mg/g)(L/mg)1/n)	1/n	R ²	
HTO-12	39.54	60.86	0.99	7.81	0.29	0.93
HTO-18	30.32	47.10	0.99	8.32	0.23	0.91
HTO-24	27.44	38.96	0.99	7.56	0.23	0.90

Table S4. The Intra-particular diffusion fitting parameters of HTO-s towards Li⁺ adsorption in 249.88 mg/L LiCl solutions at 45°C.

	Intra-particular diffusion							
Т	K₁ (mg/g'min ^{0.5})	R ²	<i>K</i> 2 (mg/g [·] min ^{0.5})	R ²	K₃ (mg/g [∙] min ^{0.5})	R ²		
HTO-12	2.55	0.99	0.27	0.93	0.01	1.00		
HTO-18	1.26	0.99	0.65	0.85	0.04	1.00		
HTO-24	1.20	0.86	0.50	0.97	0.02	1.00		

Table S5. The fitting parameters of adsorption kinetics by Pseudo-first-order and Pseudo-second-order models.

249.88 mg/L - LiCl	Pseudo-first-order				Pseudo-second-order			
	<i>q_{e,exp}</i> (mg/g)	q _{e,cal} (mg/g)	K1	R ²	q _{e,cal} (g/mg/min)	К2	R ²	
HTO-12	31.80	30.86	0.35	0.93	31.88	0.03	0.90	
HTO-18	23.37	20.22	0.35	0.50	22.50	0.02	0.83	
HTO-24	20.99	18.88	0.27	0.56	20.38	0.03	0.87	

Table S6. Adsorption selectivity by HTO-s in solutions containing Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺.

Motol	HTO-12				HTO-18			HTO-24		
ions	q _e (mmol/g)	<i>K_d</i> (mL/g)	a_M^{Li}	<i>q</i> ∉ (mmol/g)	<i>K_d</i> (mL/g)	a_M^{Li}	q _e (mmol∕g)	<i>K_d</i> (mL/g)	a_M^{Li}	
Li⁺	3.06	729.04	1.00	2.23	484.48	1.00	1.95	410.49	1.00	
Na⁺	0.11	27.86	26.16	0.10	26.49	18.29	0.15	39.21	10.47	
K⁺	0.12	7.90	92.29	0.12	7.83	61.88	0.13	8.61	47.70	
Rb⁺	0.15	16.18	45.06	0.15	16.77	28.88	0.19	20.65	19.87	
Cs⁺	0.09	22.35	32.63	0.11	27.16	17.84	0.17	41.50	9.89	