Electronic Supplementary Information (ESI)

NanoporousSemi-cycloaliphaticPolyaminalNetworks for Capture of SO2, NH3, and I2

Jun Yan,*ab Sihan Tong,ab Haiyu Sun,ab and Shengwei Guo.ab

^aKey Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China ^bInternational Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China

*Email: yanjun2018@nun.edu.cn

Experimental Section

Materials

Piperazine, anhydrous dimethyl sulfoxide (DMSO 99.7%, Superdry), N, Ndimethylformamide (DMF, 99.8%, SuperDry), N, N-dimethylacetamide (DMAc), adamantane, tetraphenylmethane, and all other reagents were purchased from J&K Chemical Co., Ltd. THF was purified by refluxing over sodium with a benzophenone complex indicator. The two tetraaldehyde monomers 1,3,5,7-tetrakis(4'-aldehydephenyl)adamantane (TFPAd)¹ and tetrakis(4aldehydephenyl)methane (TFPM)² were prepared using the same synthetic process described previously without modification.

sPAN synthesis

The sPAN-1 was synthesized using the following procedure: In a Schlenk flask of 50 mL, TFPAd (0.5527 g, 0.1 mmol), piperazine (0.3446 g, 0.4 mmol), and DMSO (18.0 mL) were charged under argon. The mixture was heated to 180 °C and stirred for 48 h. The solid was isolated by filtration and subsequently washed with DMSO, DMF, and THF. As a final step, the isolated solid was extracted with THF in a Soxhlet apparatus for three days and dried at 120°C under vacuum to produce sPAN-1 (Yield: 97%).

The sPAN-2 was similarity prepared except that the tetraaldehyde monomer was TFPM instead of TFPAd.

Material characterization

Field-emission scanning electron microscopy (FE-SEM), fourier transform infrared (FTIR) spectroscopy, solid-state ¹³C cross-polarization (CP)/total suppression of spinning side bands (TOSS) NMR spectrometer, elemental analyses (EA), powder wide-angle X-ray diffraction

(WAXD), and thermogravimetric analysis (TGA) were performed involving similar methodology and device as in our prior works.³⁻⁶ Raman spectra were collected on a HORIBA HR Evolution equipped with a 532 nm laser. Adsorption measurements for SO₂, NH₃, and CO₂ were conducted on a gas adsorption analyzer (BSD-PMC, BeiShiDe Instrument Co. Ltd., China). A Quantachrome Instruments Autosorb iQ gas sorption analyzer was used to analyze the N₂ sorption isotherms (77 K) of the as-synthesized polymers. Before all the testing, the polymers were degassed overnight at 120 °C under vacuum. In a sealed sPANs container, a sample of sPANs powder (40 mg) and an excess of crystalline iodine was heated at 348 K under ambient pressure. The container was swiftly cooled to room temperature after a set time, and the sPANs sample was weighed. The I₂ uptake of sPANs was obtained using weight gain: = $(m_2-m_1)/m_1$, where the I₂ uptake and m₁ and m₂ are the masses of the sPANs sample before and after I₂ vapor exposure, respectively.

Fig. S1 X-ray diffractions of the two sPANs.

Fig. S2 TGA curves of sPANs.

Fig. S3 FT-IR spectrum (a) and Solid-state ¹³C CP/TOSS NMR spectra (b) of sPAN-1 and sPAN-

Fig. S4 Specific surface area testing of the sPANs: (a) N_2 adsorption (filled symbol) and desorption (empty symbol) isotherms obtained at 77 K; (b) pore size distribution curves calculated based on NLDFT.

Fig. S5 Variation of the adsorption enthalpies for SO_2 , NH_3 , and CO_2 with the adsorbed amount in the sPANs.

Fig. S6 FT-IR spectra of sPAN-1 (a) and sPAN-2 (b) before (black line) and after (purple line) adsorption of iodine vapor.

Fig. S7 TGA curves of sPAN-1 (a) and sPAN-2 (b) before (black line) and after (purple line) adsorption of iodine vapor.

Fig. S8 ¹H NMR spectrum of 1,3,5,7-tetrakis(4'-aldehydephenyl)adamantane (TFPAd).

Fig. S9 ¹H NMR spectrum of tetrakis(4-aldehydephenyl)methane(TFPM).

Samples _	Measur	ed value (wt%)	Theoretical value		
	С	Н	Ν	С	Н	Ν
sPAN-1	66.05	5.180	6.65	78.60	7.82	13.58
sPAN-2	68.11	5.603	8.43	76.67	7.44	15.90

Table S1. The chemical composition of sPANs

	S _{BET}	SO ₂ (m	mol/g)	N (mm	NH3 (mmol/g)		CO ₂ (mmol/g)	
Samples	m²/g		298		298	273		– Ref
		273 K	K	K	K	K	298 K	
sPAN-1	113	8.45	5.56	5.35	3.55	1.55	1.09	This Work
sPAN-2	65	9.36	5.64	6.62	3.60	1.35	0.94	This Work
IRA-900 (Cl)	16.9	-	3.69	-	-	-	0.01	7
SIFSIX-3-Zn	-	about 2.34	2.10	-	-	-	-	8
SIFSIX-3-Ni	223	about 3.00	2.74	-	-	-	2.80	8
ELM-12	706	3.0	2.73	-	-	2.23	1.30	9
CC3	402	-	2.78	-	-	-	-	10
RCC3	-	-	12.34	-	-	-	-	10
6FT-RCC3	396	-	13.78	-	-	-	-	10
SU-101	350	-	2.20	-	-	2.50	-	11
NOT-300	-	8.1	_	-	-	7.0	-	12
NPC-1	3186.5	_	2.45	-	_	-	_	13
NPC-2	2426.2	_	1.76	-	-	-	_	13
NPC-3	2252.1	-	2.44	-	-	-	-	13
PIM-1	800	-	5.53	-	3.92	-	-	14
PIM1-AX	550	_	5.89	-	6.82	-	-	14
PIM-1-COOH	500		7.32	-	12.2	-	-	14
POP-BPh	965	-	6.5	-	-	1.92	1.07	15
PDVB	639	-	3.8	-	-	0.7	0.39	15
PI-COF-m	1003	-	6.5	-	-	-	-	16
PI-COF-m10	831	-	6.3	-	-	-	-	16
PI-COF-m20	548	-	5.6	-	-	-	-	16
[HOOC] ₀ -COF	713	-	-	-	-	-	7.00	17
[HOOC] ₁₇ -COF	652	-	-	-	-	-	9.34	17
[HOOC] ₃₃ -COF	458	-	-	-	-	-	8.21	17
[HOOC] ₅₀ -COF	279	-	-	-	-	-	6.67	17
[HOOC] ₁₀₀ - COF	150	-	-	-	-	-	4.14	17
PAF-1	4240	-	-	-	-	-	about 2.8	18
1T	915	-	-	-	-	-	3.8	19
1TC	552	-	-	-	-	-	6.41	19
1TCS	72.5	-	-	-	-	-	8.52	19

Table S2. SO_2 , NH_3 , and CO_2 uptakes in sPANs and some reported porous materials

HCP-PN-1	420	-	-	-	-	1.63	1.32	20
HCP-PN-2	210	-	-	-	-	1.11	0.86	20
MPI	1001	-	-	-	-	2.76	1.71	21
MPI-S	448	-	-	-	-	1.58	1.07	21
MPI-Ag	103	-	-	-	-	1.46	0.97	21
PAN-5F	502	-	-	-	-	1.14	0.88	22
3AM2CL	196	-	-	-	-	1.21	0.60	23
2AM3CL	105	-	-	-	-	1.10	0.56	23
2AM2CL	47	-	-	-	-	0.99	0.52	23
TAM-POF	974	13.0	9.45	-	-	3.0	1.40	24
PCN-H	2000	-				-	2.28	25
ANOP-1	149	-	-	-	-	1.45	0.95	26
ANOP-2	638	-	-	-	-	2.31	1.38	26

Samples	Gas	T (K)	<i>a</i> (×10 ² mmol/g)	<i>b</i> (×10 ⁻⁴ kPa ⁻ ¹)	С	R ²
sPAN-1	SO ₂	298	6.9667	9.3843	0.4524	0.9953
	NH ₃	298	3.8517	8.3475	0.5197	0.9991
	CO ₂	298	1.2736	1.2862	0.8996	0.9912
sPAN-2	SO ₂	298	6.6838	9.7857	0.4604	0.9958
	NH ₃	298	4.2162	8.8968	0.4895	0.9996
	CO ₂	298	1.1304	0.9517	0.9348	0.9722

 Table S3. Single-site Langmuir-Freundlich simulated parameters for the two polymers.

Samples	V(SO ₂)/V(CO ₂)	SO ₂ /CO ₂ selectivity	Ref
sPAN-1	10:90	37.6	This Work
sPAN-2	10:90	50.3	This Work
ELM-12	10:90	30	9
MFM-170	10:90	30	27
MFM-601	10:90	32	28
POP-Py	10:90	31	15
POP-BPy	10:90	29.8	15
POP-PyI	10:90	19.5	15
POP-PyA	10:90	25.0	15
POP-BPh	10:90	17.8	15
PDVB	10:90	19.5	15
AC from Petcoke	10:90	30	29
HNIP-TBMB-1	10:90	91	30
HNIP-TBMB-2	10:90	50	30
HNIP-DCX-1	10:90	23	30
GU-0.2	10:90	13.5 ^a	31
GU-0.5	10:90	15.8 ª	31
GU-1	10:90	16 ^a	31
Gu-2	10:90	13.3 ª	31
ECUT-100	1:99	26.9-27.5	32

Table S4. SO₂/CO₂ selectivity of sPANs and some reported porous materials at 298 K and 100 $$\rm kPa$$

^a296.2 K and 100 kPa.

Samples	S _{BET} (m ² /g)	T(K)	$I_2(mg/g)$	Ref
sPAN-1	113	348	2505	This Work
sPAN-2	65	348	2656	This Work
NRPP-1	1579	353	1920	33
NRPP-2	1028	353	2220	33
MALP-1	1179	350	2086	34
MALP-2	1126	350	2185	34
MALP-3	1141	350	1867	34
MALP-4	1093	350	2038	34
PAN-FPP5	788.0	345	2225	35
PAN-TPDA	752.0	345	1453	35
HCP-PN-1	420	353	1560	20
HCP-PN-2	210	353	1900	20
CSU-CPOPs-1	1032.4	353	4940	36
CSU-CPOPs-2	554.8	353	4240	36
CSU-CPOPs-3	268.8	353	3470	36
NOP-53	744	348	1770	37
NOP-54	1178	348	2020	37
NOP-55	526	348	1390	37
OM-COF-300	1410	348	3150	38
NM-COF-300	1374	348	1480	38
FcTz-POP	410	348	3960	39
BpTz-POP	414	348	2160	39
HCPs-B	717	348	1070	40
HCPs-N	579	348	2100	40
HCPs-S	167	348	1790	40
CMP-LS4	462	353	3320	41
CMP-LS5	1185	353	4400	41
CMP-LS6	679	353	2440	41
TTPT	315.5	350	1770	42
BDP-CPP-1	635	348	2830	43
BDP-CPP-2	235	348	2230	43
NBDP-CPP	658	348	1500	43
Azo-Trip	510.4	350	2380	44
ANOP-1	149	348	3111	26
ANOP-2	638	348	3209	26

Table S5. I_2 uptakes in sPANs and some reported porous materials

Samples	Pseudo-firs	st order kind	etics (PFO)	Pseudo-second order kinetics (PSO)			
	a K ₁		D ²	9 (ma/a)	K ₂	P ²	
	(mg/g)	(h ⁻¹)	K	a (iiig/g)	(×10 ⁻⁵ g/(mg×h))	IX.	
sPAN-1	2516	0.2012	0.9992	2897	8.509	0.9867	
sPAN-2	2723	0.1386	0.9969	3298	4.497	0.9851	

Table S6. Results from Linear Regression of Adsorption Rate Experiments of sPAN-1 and sPAN-2

Reference

- 1. G. Li, B. Zhang, J. Yan and Z. Wang, Chem. Commun., 2014, 50, 1897-1899.
- L. Zeng, P. Liao, H. Liu, L. Liu, Z. Liang, J. Zhang, L. Chen and C.-Y. Su, J. Mater. Chem. A, 2016, 4, 8328-8336.
- 3. J. Yan, S. Tong, H. Sun and S. Guo, Sep. Purif. Technol., 2023, 311, 123205.
- J. Yan, Y. Tan, L. Wei, Z. Liu, Q. Wang, H. Sun, Z. Wang, D. Li, Y. Qian and S. Guo, *Ind. Eng. Chem. Res.*, 2022, 61, 13453-13460.
- J. Yan, H. Sun, Q. Wang, L. Lu, B. Zhang, Z. Wang, S. Guo and F. Han, New J. Chem., 2022, 46, 7580-7587.
- 6. J. Yan, Z. Liu, H. Sun, S. Tong and S. Guo, New J. Chem., 2022, 46, 19401-19406.
- X. Wu, H.-C. Lan, N.-N. Cheng, T. Guo, W.-T. Zheng, Y. Chen and K. Huang, *Fuel*, 2022, 310, 122468.
- X. Cui, Q. Yang, L. Yang, R. Krishna, Z. Zhang, Z. Bao, H. Wu, Q. Ren, W. Zhou, B. Chen and H. Xing, *Adv. Mater.*, 2017, 29, 1606929.
- Y. Zhang, P. Zhang, W. Yu, J. Zhang, J. Huang, J. Wang, M. Xu, Q. Deng, Z. Zeng and S. Deng, ACS Appl. Mater. Interfaces, 2019, 11, 10680-10688.
- E. Martinez-Ahumada, D. He, V. Berryman, A. Lopez-Olvera, M. Hernandez, V. Jancik, V. Martis, M. A. Vera, E. Lima, D. J. Parker, A. I. Cooper, I. A. Ibarra and M. Liu, *Angew.Chem. Int. Ed.*, 2021, 60, 17556-17563.
- E. S. Grape, J. G. Flores, T. Hidalgo, E. Martínez-Ahumada, A. Gutiérrez-Alejandre, A. Hautier, D. R. Williams, M. O'Keeffe, L. O. hrström, T. Willhammar, P. Horcajada, I. A. Ibarra and A. K. Inge, *J. Am. Chem. Soc.*, 2020, 142, 16795–16804.
- S. Yang, J. Sun, D. Anderson, A. J. Ramirez-Cuesta, R. N. Ruth Newby, A. J. Blake, S. K. Callear, J. E. Parker, W. I. F. David, C. C. Tang and M. Schröder, *Nat. Chem.*, 2012, 4, 887-894.
- A. Wang, R. Fan, X. Pi, S. Hao, X. Zheng and Y. Yang, *Cryst. Growth Des.*, 2019, 19, 1973-1984.
- D. Jung, Z. Chen, S. Alayoglu, M. R. Mian, T. A. Goetjen, K. B. Idrees, K. O. Kirlikovali, T. Islamoglu and O. K. Farha, ACS Appl. Mater. Interfaces, 2021, 13, 10409-10415.
- Z. Dai, W. Chen, X. Kan, F. Li, Y. Bao, F. Zhang, Y. Xiong, X. Meng, A. Zheng, F. S. Xiao and F. Liu, ACS Macro Lett, 2022, 11, 999-1007.
- 16. G. Y. Lee, J. Lee, H. T. Vo, S. Kim, H. Lee and T. Park, Sci. Rep., 2017, 7, 557.
- Y. Yang, M. Faheem, L. Wang, Q. Meng, H. Sha, N. Yang, Y. Yuan and G. Zhu, ACS Cent. Sci., 2018, 4, 748-754.
- 18. J. F. Van Humbeck, T. M. McDonald, X. Jing, B. M. Wiers, G. Zhu and J. R. Long, *J. Am. Chem. Soc.*, 2014, **136**, 2432-2440.
- D. W. Kang, M. Kang, M. Moon, H. Kim, S. Eom, J. H. Choe, W. R. Lee and C. S. Hong, *Chem. Sci.*, 2018, 9, 6871-6877.
- 20. A. Abid, S. Razzaque, I. Hussain and B. Tan, Macromolecules, 2021, 54, 5848-5855.
- 21. J. Yan, B. Zhang, L. Guo and Z. Wang, J. Phys. Chem. C, 2018, 123, 575-583.
- 22. C. Wang, J. Zhang and Z. Wang, ACS Appl. Nano Mater., 2021, 4, 14060-14068.
- 23. S.-C. Qi, J.-K. Wu, J. Lu, G.-X. Yu, R.-R. Zhu, Y. Liu, X.-Q. Liu and L.-B. Sun, *J. Mater. Chem. A*, 2019, **7**, 17842-17853.
- 24. S. Chen, Y. Wu, W. Zhang, S. Wang, T. Yan, S. He, B. Yang and H. Ma, Chem. Eng. J.,

2022, **429**, 132480.

- 25. S.-C. Qi, Y.-F. Yu, Z.-H. Yang, X.-Y. Liu, X.-J. Lu, X.-Q. Liu and L.-B. Sun, *AIChE J.*, 2022, e17994, DOI: 10.1002/aic.17994.
- 26. J. Yan, Y. Guo, S. Xie, Q. Wang, Z. Leng, D. Li, K. Qi and H. Sun, *Macromol. Chem. Phys.*, 2022, **223**, 2200034.
- 27. G. L. Smith, J. E. Eyley, X. Han, X. Zhang, J. Li, N. M. Jacques, H. G. W. Godfrey, S. P. Argent, L. J. McCormick McPherson, S. J. Teat, Y. Cheng, M. D. Frogley, G. Cinque, S. J. Day, C. C. Tang, T. L. Easun, S. Rudic, A. J. Ramirez-Cuesta, S. Yang and M. Schroder, *Nat. Mater.*, 2019, **18**, 1358-1365.
- 28. J. H. Carter, X. Han, F. Y. Moreau, I. da Silva, A. Nevin, H. G. W. Godfrey, C. C. Tang, S. Yang and M. Schroder, J. Am. Chem. Soc., 2018, 140, 15564-15567.
- 29. J. H. Jacobs, K. G. Wynnyk, R. Lalani, R. Sui, J. Wu, V. Montes, J. M. Hill and R. A. Marriott, *Ind. Eng. Chem. Res.*, 2019, **58**, 18896-18900.
- 30. X.-C. An, Z.-M. Li, Y. Zhou, W. Zhu and D.-J. Tao, Chem. Eng. J., 2020, 394, 124859.
- 31. J.-Y. Zhang, J.-B. Zhang, M. Li, Z. Wu, S. Dai and K. Huang, *Chem. Eng. J.*, 2020, **391**, 123579.
- 32. L. J. Guo, X. F. Feng, Z. Gao, R. Krishna and F. Luo, Inorg. Chem. , 2021, 60, 1310-1314.
- 33. Y. H. Abdelmoaty, T. D. Tessema, F. A. Choudhury, O. M. El-Kadri and H. M. El-Kaderi, *ACS Appl. Mater. Interfaces* 2018, **10**, 16049-16058.
- M. Rong, L. Yang, L. Wang, H. Xing, J. Yu, H. Qu and H. Liu, *Ind. Eng. Chem. Res.*, 2019, 58, 17369-17379.
- S. Zhang, X. Li, W. Gong, T. Sun, Z. Wang and G. Ning, *Ind. Eng. Chem. Res.*, 2020, 59, 3269-3278.
- 36. S. Xiong, X. Tang, C. Pan, L. Li, J. Tang and G. Yu, *ACS Appl. Mater. Interfaces*, 2019, **11**, 27335-27342.
- 37. D. Chen, Y. Fu, W. Yu, G. Yu and C. Pan, Chem. Eng. J., 2018, 334, 900-906.
- T. Liu, Y. Zhao, M. Song, X. Pang, X. Shi, J. Jia, L. Chi and G. Lu, J. Am. Chem. Soc., 2023, 145, 2544-2552.
- 39. Y. Wang, J. Tao, S. Xiong, P. Lu, J. Tang, J. He, M. U. Javaid, C. Pan and G. Yu, *Chem. Eng. J.*, 2020, **380**, 122420.
- 40. H. Ma, Q.-M. Zhang, G. Cheng, Z. Wang, Q.-S. Zong, B. Tan and C. Zhang, ACS Appl. Polym. Mater. , 2020, **3**, 209-215.
- 41. S. Wang, Y. Liu, Y. Ye, X. Meng, J. Du, X. Song and Z. Liang, *Polym. Chem.*, 2019, **10**, 2608-2615.
- 42. T. Geng, W. Zhang, Z. Zhu, G. Chen, L. Ma, S. Ye and Q. Niu, *Polym. Chem.*, 2018, **9**, 777-784.
- 43. Y. Zhu, Y.-J. Ji, D.-G. Wang, Y. Zhang, H. Tang, X.-R. Jia, M. Song, G. Yu and G.-C. Kuang, *J. Mater. Chem. A*, 2017, **5**, 6622-6629.
- 44. Q.-Q. Dang, X.-M. Wang, Y.-F. Zhan and X.-M. Zhang, Polym. Chem., 2016, 7, 643-647