Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Revealing the promoting effect of Zn on Ni-based CO₂ hydrogenation catalysts

Liang Shen, Wenhao Zhang, Yifei Feng, Jing Xu, Minghui Zhu*

State Key Laboratory of Chemical Engineering, East China University of Science and

Technology, 130 Meilong Road, Shanghai 200237, China

Corresponding Email: minghuizhu@ecust.edu.cn

Fig. S1 Catalytic performance of CO_2 and CO hydrogenation over NiZn/Al₂O₃ catalysts

Fig. S2 XPS spectra of Zn LMM for c) as-prepared and d) reduced catalysts

Fig. S3 The FFT images of 20Ni1Zn-H

Fig. S4 The FFT images of 20Ni20Zn-H

Fig. S5 CO-DRIFTS spectra of NiZn/Al₂O₃ catalysts

Fig. S6 In situ DRIFTS spectra of NiZn/Al₂O₃ catalysts during CO hydrogenation

In order to prove that the particle size effect was not the main reason for the selective regulation of NiZn/Al₂O₃ catalysts, we first prepared Ni/Al₂O₃ with 20 wt.% by the same method. Then we loaded the catalyst with different amounts of Zn, to ensure that Ni nanoparticles have nearly the same size. The results of the activity test in Fig. S4 show a similar pattern.

Fig. S7 Catalytic performance of CO₂/CO hydrogenation over ZnO-Ni/Al₂O₃

Catalysts

Catalyst	H ₂ :CO ₂	Temperatur	CO ₂ conversion	CO selectivity	Ref.
	ratio	e (°C)	(%)	(%)	
20Ni20Zn	4:1	350/400	14.4/26.8	95.5/83.4	This work
CuO _x /CeO ₂	1:1	400	9	100	1
Pd/SiO ₂	4:1	450	40.8	89.6	2
Fe ₃ O ₄	1:1	480	12.5	> 99	3
Fe film	4:1	300	2.2	~80	4
Fe@graphite@C	1:1	550	30.2	>99	5
MoO ₂ /FAU	1:1	500	14.3	99	6

Table S1. Comparison of CO_2 conversion and CO selectivity for the catalysts

Catalvet	Dispersion (%)	TOF (s^{-1})		
Cataryst		CO ₂ hydrogenation	CO hydrogenation	
20Ni	14.27	15.59×103	14.89×10-3	
20Ni1Zn	8.15	14.79×10 ⁻³	6.84×10 ⁻³	
20Ni20Zn	5.93	3.80×10-3	0.75×10 ⁻³	

Table S2. Dispersion and turnover frequency of $NiZn/Al_2O_3$ catalysts

analysis							
Catalyst	$Zn^{\delta+}/(Zn^{\delta+}+Zn^{2+})$	$Zn^{\delta+}/(Zn^{\delta+}+Zn^{2+})$	$Ni^{0/(Ni^{0}+Ni^{\delta^{+}})}$				
	(%) ^a	(%) ^b	(%) ^b				
20Ni	/	/	71.78				
20Ni1Zn	35.13	35.81	63.85				
20Ni20Zn	23.78	31.54	57.12				

Table S3. Surface chemical states of as-prepared/reduced catalysts based on XPS

^a as-prepared

^b reduced

References

- M. Ronda-Lloret, S. Rico-Francés, A. Sepúlveda-Escribano and E. V. Ramos-Fernandez, *Appl. Catal. A Gen.*, 2018, **562**, 28–36.
- 2 J. N. Park and E. W. McFarland, J. Catal., 2009, 266, 92–97.
- 3 Chou, Loiland and Lobo, *Catalysts*, 2019, **9**, 773.
- H. Kierzkowska-Pawlak, M. Ryba, M. Fronczak, R. Kapica, J. Sielski, M. Sitarz, P. Zając, K.
 Łyszczarz and J. Tyczkowski, *Catalysts*, 2021, 11, 883.
- 5 X. Zhao, Z. Wu, J. Fu, J. Guo and S. Kang, ACS Appl. Mater. Interfaces, 2021, 13, 57100–57106.
- A. Okemoto, M. R. Harada, T. Ishizaka, N. Hiyoshi and K. Sato, *Appl. Catal. A Gen.*, 2020, 592, 117415.