Passerini chemistries for synthesis of polymer pro-drug and polymersome drug delivery nanoparticles

Alessandra Travanut,^a Patrícia F. Monteiro,^a Sean Smith,^b Steven M. Howdle,^b Anna M. Grabowska,^c Barrie Kellam,^a Michael A. R. Meier,^d and Cameron Alexander.^{a*}

Table of Contents

Materials	1
Synthetic procedures and spectroscopic data Synthesis of methyl 12-isocyanododecanoate (3) [1]	1 1
Synthesis of but-3-en-1-yl 12-isocyanododecanoate (4)	3
Synthesis of AB-Type monomer (5) [1]	4
Synthesis of P1 – Passerini-3CR polymerization[2]	5
Synthesis of P2 – Passerini-3CR polymerization [2]	5
P2 Oxidation to P3 via ozonolysis	7
Synthesis of P1-Cy5 and P3-Cy5	9
Synthesis of P4-Dox	
Formulation and characterization P1-Dox POLYMERSOMES FORMULATION	11
P3-Cy5 AND P4-Dox NANOPARTICLES FORMULATION	12
P1-Dox AND P4-Dox POLYMERSOMES DRUG LOADING AND ENCAPSULATION EFFICIENCY	12
P1-Dox AND P4-Dox IN VITRO DRUG RELEASE	13
Cell culture experiments CELLULAR UPTAKE STUDIES WITH P1-Cy5 AND P3-CY5 NANOPARTICLES	
3D tumor TNBC spheroids	14
Statistical analysis References Author Contributions	

Materials

The following chemicals were used as received: trimethyl orthoformate (≥99%, Aldrich), thionyl chloride (≥97%, Aldrich), diisopropylamine (≥99%, Aldrich), phosphorus(V) oxidychloride (≥99%, Aldrich), 10-undecenal (≥90%, Aldrich), 3-mercaptopropionic

Synthetic procedures and spectroscopic data

Synthesis of methyl 12-isocyanododecanoate (3) [1]

Scheme S 1: methoxy protection of 12-aminododecanoic acid carboxylic group.

Figure S 1: ¹H NMR of 12-methoxy-12-oxododecan-1-aminium (1) in CDCl₃.

Scheme S 2: synthetic route of methyl 12-isocyanododecanoate (3): formylation of 12-methoxy-12-oxododecan-1-aminium amino group (1) and final dehydration to methyl 12-isocyanododecanoate (3).

Figure S 2: ¹H NMR of methyl 12-isocyanododecanoate (3) in CDCl₃.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

Figure S 3: ¹³ C NMR of methyl 12-isocyanododecanoate (3) in CDCl₃.

Synthesis of but-3-en-1-yl 12-isocyanododecanoate (4)

Scheme S 3: Synthesis of but-3-en-1-yl 12-isocyanododecanoate (4) starting from methyl 12-isocyanododecanoate (3).

Figure S 4: ¹H NMR of but-3-en-1-yl 12-isocyanododecanoate (4) in CDCl₃; * diethyl ether.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

Figure S 5: ¹³ C NMR of but-3-en-1-yl 12-isocyanododecanoate (4) in CDCl3.

Synthesis of AB-Type monomer (5) [1]

Scheme S 4: synthesis of AB-type monomer (5) via thiol-ene reaction

Synthesis of P1 – Passerini-3CR polymerization[2]

Synthesis of P2 – Passerini-3CR polymerization [2]

Scheme S 5: Ozonolysis reaction scheme of P2 Passerini diblock copolymer to yield P3 Passerini diblock copolymer.

Figure S 9: Integrated ¹H NMR spectrum of Passerini diblock copolymer P3 in CDCl_{3.}

Figure S 11: (A) FT-IR characterization spectrum of Passerini P2 diblock copolymer, C-H stretches at 3280 and 2920 cm⁻¹, C=C stretch at 1653 cm⁻¹, C=O stretch at 1734 cm⁻¹. (B) FT-IR characterization spectrum of Passerini P3 diblock copolymer, aldehyde group stretching at 2790 cm⁻¹ and sulfone stretches at 1239, 1278 and 1339 cm⁻¹. (C) FT-IR characterization spectrum of Passerini P4-Dox prodrug, C=O stretch at 1734 cm⁻¹ and imine stretch at 1654 cm⁻¹

Scheme S 7: Reaction scheme of P3 Passerini diblock copolymer conjugation reaction with amino Cy5.

Figure S 12: Cy5-NH₂ calibration curve in water 10% DMF: Y= 0.08188X - 0.01184, R²= 0.99.

Figure S 13: Integrated ¹H NMR spectrum of Passerini diblock copolymer P4-Dox in CDCl_{3.}

^{230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

Figure S 14: ¹³ C NMR of P4-Dox in CDCl₃.

Polymer	Mn (g/mol)	Ð	¹ H NMR Mn (g/mol)
P1	16000	1.55	11300
P2	3800	1.13	4900
Р3	4700	1.11	5115
P4-Dox	7060	1.26	7000

Table S 1: SEC characterization data in THF and the molecular weight calculated by 1H NMR of the P1, P2, P3 and P4-Dox Passerini-3CR copolymers.

Figure S 15: SEC chromatogram in THF of of the P1, P2, P3 and P4-Dox Passerini-3CR copolymers.

Formulation and characterization

Figure S 16: DLS intensity data of polymersomes diameter (A) P1 135 nm± 33, (B) P1DOX 146 nm± 42 AND (C) P1-Cy5 91 ± 46 nm.

Formulation	diameter
Formulation	nm
P1 polymersome	139 ± 32
P1-Cy5 polymersome	91 ± 46
P1-Dox	146 ± 42

Table S 2: Characterization data of empty P1, P1-Cy5 and doxorubicin loaded polymersomes P1DOX.

P3-Cy5 AND P4-Dox NANOPARTICLES FORMULATION

Figure S 17: DLS volume data of P3-Cy5 21 nm± 7.

Formulation	diameter
	nm
P3-Cy5 nanoparticles	21 ± 7
P4-Dox	16 ± 6

Table S 3: Characterization data of P3-Cy5 and P4-Dox nanoparticles.

P1-Dox AND P4-Dox POLYMERSOMES DRUG LOADING AND ENCAPSULATION EFFICIENCY

Figure S 18 (A) Doxorubicin hydrochloride calibration curve, UV detector 485 nm: Y= 13100*X, R²=0.997. (B) Doxorubicin hydrochloride chromatogram UV detector 485 nm, RT=19.4 min

The drug loading and encapsulation efficiency were calculated using the following equations:

$$Drug \ loading \ (\%) = \frac{Weight \ of \ loaded \ drug}{Total \ weight \ of \ polymersomes} X \ 100$$

Drug encapsulation % (w/w) =
$$\frac{Total amount of drug - Unloaded drug}{Total amount of drug} X 100$$
 Eq 2

P1-Dox AND P4-Dox IN VITRO DRUG RELEASE

Figure S 19: Uv-Vis doxorubicin calibration curve in PBS pH 7.4: Y=1.7486x – 0.0006; R^2 = 0.9996

Figure S 20: Uv-Vis doxorubicin calibration curve in acetate buffer pH 5: Y=3.7889x – 0.0066; R²= 0.9984

Cell culture experiments

Figure S 21: Cellular uptake assessed by confocal microscopy of doxorubicin in MDA-MB-231 cells after 4 h incubation. (A) Superimposition of doxorubicin (Ex 480 nm/Em 590 nm and nuclei stained with Hoechst 33342 (Ex 350 nm/Em 461 nm), (B) Superimposition of doxorubicin (Ex 480 nm/Em 590 nm) and Cell membrane stained with Cell MaskTM Deep Red plasma membrane stain (Ex 649 nm/Em 666 nm). Scale bar 20 µm.

Figure S 22: Cellular uptake assessed by confocal microscopy of P4-Dox in MDA-MB-231 cells after 4 h incubation. (A) Superimposition of P4-Dox (Ex 480 nm/Em 590 nm and nuclei stained with Hoechst 33342 (Ex 350 nm/Em 461 nm), (B) Superimposition of doxorubicin (Ex 480 nm/Em 590 nm) and cell membrane stained with Cell MaskTM Deep Red plasma membrane stain (Ex 649 nm/Em 666 nm). Scale bar 20 µm.

Figure S 23: Cellular uptake assessed by confocal microscopy of P1-Cy5 in MDA-MB-231 cells after 4 h incubation. Zeta-stack picture with x-y-z sections. Nuclei are stained blue (Hoechst 33342), membranes green (CellMask-Green) and polymers red (Cy5). Scale bar 10 🛛m. From the navigator: blue square X-Y, green square X-Z and red square Y-Z.

Figure S 24: Cellular uptake assessed by confocal microscopy of P3-Cy5 in MDA-MB-231 cells after 4 h incubation. Zeta-stack picture with x-y-z sections. Nuclei are stained blue (Hoechst 33342), membranes green (CellMask-Green) and polymers red (Cy5). Scale bar 10 Im. From the navigator: blue square X-Y, green square X-Z and red square Y-Z.

Figure S 25: Cellular uptake assessed by confocal microscopy of P3-Cy5 in MDA-MB-231 cells after 4 h incubation. Zeta-stack picture with x-y-z sections. Nuclei are stained blue (Hoechst 33342), membranes green (CellMask-Green) and polymers red (Cy5). Scale bar 10 🖻m. From the navigator: blue square X-Y, green square X-Z and red square Y-Z.

CELLULAR UPTAKE STUDIES WITH P1-Cy5 AND P3-CY5 NANOPARTICLES

Flow cytometry

Figure S 26: Cellular uptake of Cy5-labelled P1-Cy5 polymersomes by flow cytometry in MDA-MB-231 triple negative breast cancer cells after 4 h of incubation. (A) Gate showing negative control MDA-MB-231 cells - an example of the cell population taken for the uptake experiments (B) FACS uptake histograms for P1-Cy5 polymersomes: in blue the negative control, in light blue P1-Cy5 2.29 μM, in pink P1-Cy5 22.93 μM and in purple P1-Cy5 47.85 μM.

Figure S 27: Cellular uptake of P2-Cy5-labelled nanoparticles by MDA-MB-231 triple negative breast cancer cells after 4 h of incubation. (A) Gate showing negative control MDA-MB-231 cells - an example of the cell population taken for the uptake experiments. (B) FACS uptake histograms for P3-Cy5-labelled nanoparticles: 5µg/mL (green), 10µg/mL (light blue), 15µg/mL (orange), 20µg/mL (purple), 25µg/mL (blue); untreated cells (red). Data are representative of three experiments (n=3) (*p<0.05, t-test).</p>

3D tumor TNBC spheroids

Figure S 28: Quantification of Mean Fluorescence Intensity of the untreated cells (control) and cells treated with P1-Cy5 (A) and P3_Cy5 (B) labelled nanoparticles in TNBC spheroids. Data are representative of three experiments (*p<0.05, t-test).

Figure S 29: Cellular uptake assessed by confocal microscopy of P1-Cy5 in MDA-MB-231 3D spheroids. Zeta-stack picture with x-y-z sections. Nuclei are stained blue (Hoechst 33342) and polymers red (Cy5). Scale bar 200 @m. From the navigator: blue square X-Y, green square X-Z and red square Y-Z.

P1 Ortho image

Figure S 30: Cellular uptake assessed by confocal microscopy of P3-Cy5 in MDA-MB-231 3D spheroids. Zeta-stack picture with x-y-z sections. Nuclei are stained blue (Hoechst 33342) and polymers red (Cy5). Scale bar 200 Im. From the navigator: blue square X-Y, green square X-Z and red square Y-Z.

Cell metabolic activity assays

Figure S 23: Protease activity of MDA-MB-231 cells treated with P1- (A) and P3 (B) polymers. Data are representative of three experiments (*p<0.05, t-test).

Statistical analysis

Unless otherwise stated, all data are shown as mean \pm standard deviation (SD). Two way analysis of variance (ANOVA) was applied for comparison of three or more group means (Tukey's multiple comparisons test). A P value of < 0.05 was considered statistically significant. ****, ***, and * display p < 0.0001, p < 0.001, p < 0.01, and p < 0.05, respectively. GraphPad Prism 8.1 software was used for data analysis.

References

- [1] S. Oelmann, A. Travanut, D. Barther, M. Romero, S. M. Howdle, C. Alexander, M. A. R. Meier, *Biomacromolecules* 2019, 20, 90-101.
- [2] A. Travanut, P. F. Monteiro, S. Oelmann, S. M. Howdle, A. M. Grabowska, P. A. Clarke, A. A. Ritchie, M. A. R. Meier, C. Alexander, Macromolecular Rapid
- Communications **2020**, n/a, 2000321.
- [3] N. Xiao, H. Liang, J. Lu, Soft Matter 2011, 7, 10834-10840.
- [4] a) X. Li, D. J. Hirsh, D. Cabral-Lilly, A. Zirkel, S. M. Gruner, A. S. Janoff, W. R. Perkins, *Biochimica et Biophysica Acta (BBA) Biomembranes* 1998, 1415, 23-40; b) A. Choucair, P. Lim Soo, A. Eisenberg, *Langmuir* 2005, 21, 9308-9313.
- [5] R. R. Larson, M. B. Khazaeli, H. K. Dillon, Applied Occupational and Environmental Hygiene 2003, 18, 109-119.
- [6] J. A. Anderson, S. Lamichhane, T. Remund, P. Kelly, G. Mani, Acta Biomaterialia 2016, 29, 333-351.
- [7] V. Knorr, V. Russ, L. Allmendinger, M. Ogris, E. Wagner, Bioconjugate Chemistry 2008, 19, 1625-1634.
- [8] a) C. Battistella, H.-A. Klok, Macromolecular Bioscience 2017, 17, 1700022; b) Y. Zhang, C. Yang, W. Wang, J. Liu, Q. Liu, F. Huang, L. Chu, H. Gao, C. Li, D. Kong, Q. Liu, J. Liu, Scientific Reports 2016, 6.
- [9] M. Gulfam, T. Matini, P. F. Monteiro, R. Riva, H. Collins, K. Spriggs, S. M. Howdle, C. Jérôme, C. Alexander, 2017.

Author Contributions

Alessandra Travanut: data curation, formal analysis, investigation, project administration, validation, writing of original draft and lead.

Patrícia F. Monteiro: data acquisition, analysis and method development support,

Sean Smith: ozonolysis reaction

Steven M. Howdle: project administration support, supervision

Anna M. Grabowska: project administration support, supervision

Barrie Kellam: project administration support

Michael A. R. Meier: project administration support, draft revision and editing

Cameron Alexander: project administration, validation, funding acquisition, draft revision and editing, lead.