Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Near-infrared light-driven photoelectrochemical aptasensing platform for adenosine triphosphate detection based on Ybdoped Bi₂S₃ nanorods

Jie Gao,^{ab} Yifan Ding,^a Kai Yan^a and Jingdong Zhang^{a*}

^a Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

of Education), Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica,

School of Chemistry and Chemical Engineering, Huazhong University of Science and

Technology, Luoyu Road 1037, Wuhan, 430074, China

^b School of Chemistry and Chemical Engineering, Henan Normal University,

Xinxiang, Henan, 453007, China

*Corresponding author. E-mail address: zhangjd@mail.hust.edu.cn (J. Zhang)

Chemicals and materials

Ytterbium(III) chloride hexahydrate (YbCl₃·6H₂O) and sodium sulfide nonahydrate (Na₂S·9H₂O) were acquired from Aladdin Bio-Chem TechnologyCo., Ltd. (Shanghai, China).Bismuth nitrate pentahydrate (Bi(NO₃)₃·5H₂O), urea (CO(NH₂)₂), ammonium phosphate monobasic (NH₄H₂PO₄), methanol and ethylene glycol were supplied by Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China).Adenosine triphosphate (ATP) was obtained from Sigma-AldrichCo., Ltd. ATP-binding DNA aptamer with sequence of 5'-AGA GAA CCT GGG GGA GTA TTG CGG AGG AAG GTC ATA GTA ACT-3'was synthesized by Shanghai Sangon BiotechCo., Ltd. (Shanghai, China). The aptamer was diluted with TE buffer (pH 8.0) and stored at 4 °C for further use.

Apparatus and procedure

The morphology and composition of samples were performed on a SU8010 field emission scanning electron microscope (SEM, Hitachi, Japan) equipped with energy dispersive spectroscopy (EDS). The crystalline phase was characterized by an Empyrean X-ray diffractometer (XRD, PANalytical B.V., Netherlands). The X-ray photoelectron spectra (XPS) were recorded onan AXIS ULTRADLD-600W spectrometer (Kratos Company, England). The diffuse reflectance spectra (DRS) were analyzed by using a UV-3600 spectrophotometer (SHIMADZU, Japan).

The PEC measurements were carried out on a CHI830D electrochemical working station (Shanghai Chenhua Instrument Co. Ltd.,China) using a conventional three-electrode system. In PEC system, a CEL-S500/350 xenon lamp (CEAULIGHT Co., China) with an optical filter ($\lambda > 800$ nm) was employed as the irradiation source, and

the distance between the lamp and working electrode surface was 2 cm.

The high-performance liquid chromatograph (HPLC) measurements were performed on an Agilent (USA) 1100 module system with C18 column (150 mm × 4.6 mm). The mobile phase was a 90:10 (v/v) mixture of 20 mmol·L⁻¹ NH₄H₂PO₄/methanol with flow rate of 1 mL/min. Detection wavelength was set at 260 nm and the column temperature was 30 °C.

Fig. S1 Influence of (A) the concentration of $Yb-Bi_2S_3$ and (B) aptamer concentration. Error bars are derived from the standard deviation of three measurements.

Detection methods	Linear range	LOD (nmol·L ⁻	Reference
	$(nmol \cdot L^{-1})$	¹)	
Electrochemiluminescence	$10 \sim 1 \times 10^6$	10	1
Electrochemiluminescence	$1 \times 10^{-2} \sim 1 \times 10^{8}$	2.9×10 ⁻³	2
Electrochemistry	$10 \sim 850$	5	3
Electrochemistry	1×10 ⁻⁴ ~ 5	1×10-4	4
Electrochemistry	$1 \times 10^{-3} \sim 1 \times 10^4$	3.76×10 ⁻⁵	5
Colorimetry	50~1000	50	6
Fluorescence	$10 \sim 4.5 \times 10^5$	5	7
Fluorescence	0~100	0.6	8
PEC	0.3 ~ 200	0.1	9
PEC	1×10 ⁻⁴ ~ 10	2.5×10 ⁻⁵	10
PEC	0.5 ~ 300	0.1	This work

 Table S1 Analytical performances of different methods for ATP detection.

Spiked	Found	Recovery (%)	RSD (%)	HPLC method
(nmol·L ⁻¹)	(nmol·L ⁻¹)			$(nmol \cdot L^{-1})$
50.00	54.39	108.8	6.74	55.27
100.0	103.4	103.4	3.81	104.3
200.0	205.7	102.9	5.16	194.6

Table S2 Determination of ATP in human serum by the proposed sensor and HPLC method (n = 3).

References

- 1. C. Tian, J. Xu and H. Chen, Chem. Commun., 2012, 48, 8234-8236.
- Z. Huang, S. Yu, M. Jian, Z. Weng, H. Deng, H. Peng and W. Chen, *Anal. Chem.*, 2022, 94, 2341-2347.
- 3. M. Mashhadizadeh, N. Naseri and M. A. Mehrgardi, J. Iran. Chem. Soc., 2017, 14, 2007-2016.
- 4. G. Wang, X. Su, Q. Xu, G. Xu, J. Lin and X. Luo, Biosens. Bioelectron., 2018, 101, 129-134.
- R. Zheng, B. He, L. Xie, L. Li, J. Yang, R. Liu, W. Ren, Z. Suo, Y. Xu and Z. Qu, *Electroanal.*, 2022, 34, 74-82.
- 6. Y. Huo, L. Qi, X. Lv, T. Lai, J. Zhang and Z. Zhang, Biosens. Bioelectron., 2016, 78, 315-320.
- Q. Huang, Q. Li, Y. Chen, L. Tong, X. Lin, J. Zhu and Q. Tong, Sensor Actuat. B: Chem., 2018, 276, 82-88.
- M. Yu, Y. Yao, B. Cui, C. Sun, X. Zhao, Y. Wang, G. Q. Liu, H. Cui and Z. Zeng, ACS Appl. Nano Mater., 2019, 2, 48-57.
- Y. Liu, H. Ma, Y. Zhang, X. Pang, D. Fan, D. Wu and Q. Wei, *Biosens. Bioelectron.*, 2016, 86, 439-445.
- 10. Y. Wang, J. Xu, C. Ma, S. Li, J. Yu, S. Ge and M. Yan, J. Mater. Chem. B, 2014, 2, 3462-3468.