## Supporting Information for

## Graphitic-N-doped graphene quantum dots for photothermal eradication of

## multidrug-resistant bacterial in the second near-infrared window

Bijiang Geng,<sup>\*a†</sup> Yuan Li,<sup>b†</sup> Jinyan Hu,<sup>a</sup> Yuanyuan Chen,<sup>b</sup> Junyi Huang,<sup>b</sup> Longxiang Shen,<sup>c</sup> Dengyu Pan<sup>\*a</sup> and Ping Li<sup>\*b</sup>

<sup>a</sup> School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.

<sup>b</sup> School of Life Sciences, Shanghai University, Shanghai 200444, China.

° Department of Orthopedic Surgery, Shanghai Jiao Tong University affiliated Sixth People's Hospital,

Shanghai 200233, China



Fig. S1 The photographs of N-GQD solution stored for 90 days.



Fig. S2 The absorption spectrum of GQDs without N doped.



Fig. S3 Zeta potential of N-GQDs (200  $\mu$ g/mL).



Fig. S4 The high-resolution O 1s spectrum of N-GQDs.



**Fig. S5** (a) PL spectra of N-GQDs excited at different wavelengths varied from 350 to 400 nm. (b) Dependence of PL intensity on pH values. (c) Photostability test under 5 h continuous radiation using a 100 W xenon lamp.



**Fig. S6** (a, b) Plot of temperature change ( $\Delta$ T) over a period of 300 s versus different concentrations of N-GQDs under irradiation with an 808 (a) and 1064 nm (b) laser irradiation at the power density of 0.4 and 1.0 W/cm<sup>2</sup>, respectively. (c, d) Plot of temperature change ( $\Delta$ T) over a period of 300 s versus 808 (c) or 1064 nm (d) laser power density.



Fig. S7 Temperature elevation of N-GQDs (200  $\mu$ g/mL) stored for different times (0, 1, and 7 days) under 1064 nm (1.0 W/cm<sup>2</sup>) laser irradiation.



Fig. S8 Survey XPS spectrum, High-resolution C 1s, N 1s, and O 1s spectra of N-GQD<sub>600</sub>.



Fig. S9 Survey XPS spectrum, High-resolution C 1s, N 1s, and O 1s spectra of N-GQD<sub>10000</sub>.



**Fig. S10** (a) NIR absorption spectra of three N-GQD samples at the same concentration (200  $\mu$ g/mL). (b, c) The photothermal conversion efficiency measurements of three N-GQD samples at the same concentration (200  $\mu$ g/mL). Photothermal effect of the three N-GQD solution exposed to the 808 nm laser at 0.4 W/cm<sup>2</sup>. The lasers were shut off after 300 s irradiation. Plot of cooling time versus negative natural logarithm of the temperature driving force obtained from the cooling period after the 808 nm irradiation. (d) Proposed formation mechanism of *F* centers at graphitic N sites, where N atoms donate one excess electron and form N<sup>+</sup> cations to trap the electron with a large binding energy. (e) Defect energy levels of doped graphitic N as a *F* center within the wide band gap of N-GQDs and possible optical transitions from the HOMO level to the defect level and from the singly-occupied defect level to the LUMO level under the NIR excitation.



**Fig. S11** (a) In vitro cytotoxicity of BEAS-2B cells after receiving treatments with N-GQDs at varied concentrations. (b) Hemolytic percentages of RBCs treated with different concentrations of N-GQD



**Fig. S12** (a, b) Photographic images of the colonies (a) and the survival rate (b) of *S. aureus* after receiving treatments with varied concentrations of N-GQD aqueous solution without or with 808 (0.4  $W/cm^2$ ) or 1064 nm laser (1.0  $W/cm^2$ ) irradiation for 5 min. (c) Biomass quantification of *S. aureus* biofilms in (d) by measurement of absorbance at 595 nm. (d) Image of crystal violet staining of *S. aureus* biofilm on glass slides. (e) Live (green fluorescence, SYTO9) and dead (red fluorescence, PI) staining of *S. aureus* under various treatments. (f) SEM images of *S. aureus* after receiving various treatments.



**Fig. S13** (a, b) Photographic images of the colonies (a) and the survival rate (b) of *E. coli* after receiving treatments with varied concentrations of N-GQD aqueous solution without or with 808 (0.4 W/cm<sup>2</sup>) or 1064 nm laser (1.0 W/cm<sup>2</sup>) irradiation for 5 min. (c) Biomass quantification of *E. coli* biofilms in (d) by measurement of absorbance at 595 nm. (d) Image of crystal violet staining of *E. coli* biofilm on glass slides. (e) Live (green fluorescence, SYTO9) and dead (red fluorescence, PI) staining of *E. coli* under various treatments. (f) SEM images of *E. coli* after receiving various treatments.



Fig. S14 Wound area from the four groups at different time points during the therapeutic process.



**Fig. S15** Statistic analysis of the colony numbers on the LB plate from each group (Group 1: Control; Group 2: NIR; Group 3: N-GQD; Group 4: N-GQD + NIR).



Fig. S16 Body weight of the mice in each group during the therapeutic process.