Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Development of a phos-tag-based fluorescent biosensor for sensitive detection of protein kinase in cancer cells

Su Jiang,^{‡,a} Pengyu Wang,^{‡,a} Chen-chen Li,^{‡b} Lin Cui,^{‡,a} Yueying Li,^{*,a} Chun-yang Zhang^{*,a}

^a College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan

250014, China.

^b College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology,

Qingdao 266042, China.

*Corresponding author. E-mail: cyzhang@sdnu.edu.cn; liyueying1115@qq.com.

[‡] These authors contributed equally.

Fig. S1 (A) Chemical structure of the phosphorylated peptide-DNA conjugates. (B) Structure of the biotinylated phos-tag.

Fig. S2 (A) Bond distances of phos-tag zinc (II) complex.¹ Red dotted line, coordination bond. (B) Detailed structure of phosphate skeleton of DNA in peptide-DNA.²

Fig. S3 (A) Cy5 fluorescence images prior to photobleaching step. Scale bar is 1 μm. (B) Intensity traces of single Cy5 fluorescence spots over time showing one photobleaching process.

Optimization of experimental conditions

To improve the detection sensitivity, we optimized the experimental conditions of RNase HII-actuated single-ribonucleotide repairing-mediated cycling signal amplification, including the concentration of signal probes and the amount of RNase HII. The value of F/F_0 was used to evaluate the experiments, where *F* and F_0 are the fluorescence intensity in the presence and absence of peptide-DNA conjugates, respectively. As shown in Fig. S4A, the F/F_0 value enhances with the increasing concentration of signal probe from 1 to 10 nM, and reaches the maximum at 10 nM. Thus, 10 nM signal probe is used in subsequent experiments. We further optimized the amount of RNase HII (Fig. S4B). The F/F_0 value improves with the increasing amount of RNase HII from 0.05 to 0.5 U, followed by decrease beyond the amount of 0.5 U. Thus, 0.5 U of RNase HII is used in subsequent experiments.

Fig. S4 (A) Variance of the F/F_0 value with different concentration of signal probes. (B) Variance of the F/F_0 value with different amounts of RNase HII. Error bars show the standard deviation of three experiments.

Fig. S5 Fluorescence images of phos-tag-based fluorescent biosensor as a function of PKA concentration.

The red color represents the signal of Cy5. The scale bar is 5 $\mu m.$

Fig. S6 Fluorescence images of phos-tag-based fluorescent biosensor in response to 100 nM Aurora B, 0.5 U/ μ L AK, 0.5 U/ μ L PK, 0.5 U/ μ L ALP, 100 nM Akt 1, 0.5 U/ μ L UDG, 10 μ g/mL BSA, and 1 U/ μ L PKA, respectively. The red color represents the signal of Cy5. The scale bar is 5 μ m.

Reference

- E. Kinoshita, M. Takahashi, H. Takeda, M. Shiro and T. Koike, *Dalton Trans*, 2004, DOI: 10.1039/b400269e, 1189-1193.
- 2 M. Liu, D. Zhang, X. C. Zhang, Q. F. Xu, F. Ma and C. Y. Zhang, *Chem. Commun.*, 2020, 56, 5243-5246.