Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

# **Supporting Information**

## Chitosan-based double cross-linked ionic hydrogels as a strain and

### pressure sensor with broad strain-range and high sensitivity

Xuemei Li, Zhiwei Liu, Yongri Liang\*, L-Min Wang and Ying Dan Liu\*

State Key Lab of Metastable Materials Science and Technology, and College of Materials

Science and Engineering, Yanshan University, Qinhuangdao 066004, P.R. China Email: liangyr@ysu.edu.cn (Y. L.); ydliu@ysu.edu.cn (Y.D.L.)

### Cytotoxicity Tests of the P(AAm-co-AA)/CS-Fe<sup>3+</sup> Hydrogel

NIH3T3 cells (mouse embryonic fibroblasts) (iCell Bioscience Inc) were used for the cytotoxicity assay. The growth media (Dulbecco's modified eagle medium, DMEM, Coring) was supplemented with 10% Fetal Bovine Serum (FBS) (Shanghai yuanye Bio-Technology Co., Ltd), 1% sodium pyruvate (Geno Biomedical Technology Co., Ltd) and 1% glutamine (Geno Biomedical Technology Co., Ltd). NIH3T3 cells were seeded on the 96-well plates (6000 cells/well) with the growth media (200  $\mu$ L) in an incubator (5% CO<sub>2</sub>, 37 °C). After 24 h, a certain amount of P(AAm-co-AA)/CS-Fe<sup>3+</sup> hydrogel (0.99 mg) was added. After being incubated with the hydrogel, the cell viability was measured by CCK-8 assay. Typically, 100  $\mu$ L of CCK-8 solution (Invigentech) was added to each well of the plates. NIH3T3 cells were incubated for another 2 h. Afterward, the media were transferred into another 96-well plate to measure the absorbance at 450 nm by using a microplate reader.

### Antimicrobial Tests of the P(AAm-co-AA)/CS-Fe<sup>3+</sup> Hydrogel

*Escherichia coli* (ATCC25922, *E. coli*), *Staphylococcus aureus* (ATCC25923, *S. aureus*) and *Pseudomonas aeruginosa* (CMCC(B)10104, *P. aeruginosa*) were used to test the antibacterial activity of the P(AAm-co-AA)/CS-Fe<sup>3+</sup> hydrogel *via* an inhibition zone method. The three kinds of bacteria were activated in the Luria–Bertani (LB) broth (37 °C, 180 rpm) for 24 h. Then the concentration of the bacteria suspensions was adjusted to 10<sup>7</sup> CFU/mL. 90  $\mu$ L of each suspension was seeded to the plates of LB culture medium. The hydrogel samples with a regular size (cylinder shape with a diameter of 6 mm) were exposed to the three kinds of bacteria suspension on the plates respectively. All samples were incubated (37 °C, 180 rpm) for 24 h, and then the inhibition zone was observed and measured. In addition, drug sensitive paper and 0.9 %g/L NaCl were used as positive control and negative control respectively.

| Sample                                           | Mass of reagents (g) |       |      |               |                  |
|--------------------------------------------------|----------------------|-------|------|---------------|------------------|
|                                                  | CS                   | AA    | AAm  | Irgacure 2959 | H <sub>2</sub> O |
| P(AAm-co-AA)                                     | 0                    | 0.144 | 1.42 | 0.025         | 10               |
| P(AAm-co-AA)/CS                                  | 0.2                  | 0.144 | 1.42 | 0.025         | 10               |
| P(AAm-co-AA)/CS-Fe <sup>3+</sup> -1              | 0.2                  | 0.086 | 1.42 | 0.025         | 10               |
| P(AAm-co-AA)/CS-Fe <sup>3+</sup> -2              | 0.2                  | 0.115 | 1.42 | 0.025         | 10               |
| P(AAm-co-AA)/CS-Fe <sup>3+</sup> -3              | 0.2                  | 0.144 | 1.42 | 0.025         | 10               |
| P(AAm-co-AA)/CS-Fe <sup>3+</sup> -4              | 0.2                  | 0.172 | 1.42 | 0.025         | 10               |
| P(AAm-co-AA)/CS-Fe <sup>3+</sup> -5              | 0.1                  | 0.144 | 1.42 | 0.025         | 10               |
| P(AAm-co-AA)/CS-Fe <sup>3+</sup> -6 <sup>a</sup> | 0.2                  | 0.144 | 1.42 | 0.025         | 10               |
| P(AAm-co-AA)/CS-Fe <sup>3+</sup> -7              | 0.3                  | 0.144 | 1.42 | 0.025         | 10               |

Table S1. The dosage of each reagent used in the fabrication process of hydrogels.

<sup>a</sup> The sample for extensive mechanical and sensing performance study.

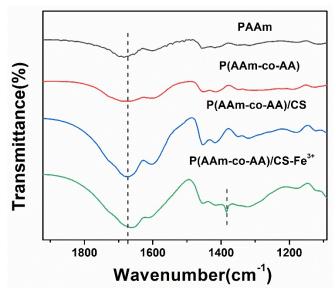



Figure S1. FTIR spectra of PAAm, P(AAm-co-AA), P(AAm-co-AA)/CS, and P(AAm-co-AA)/CS-Fe<sup>3+</sup>.

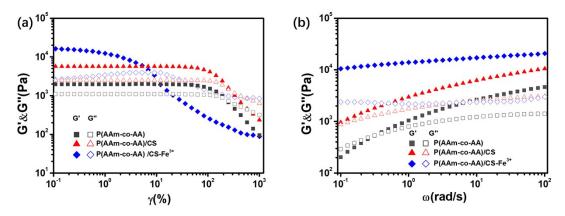



Figure S2. Storage modulus (G') and loss modulus (G'') of P(AAm-co-AA), P(AAm-co-AA)/CS and P(AAm-co-AA)/CS-Fe<sup>3+</sup> hydrogels in amlitude sweep (a) and frequency sweep (b).

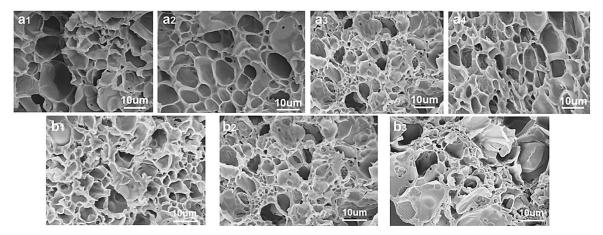



Figure S3. SEM images of the cross section of the P(AAm-co-AA)/CS-Fe<sup>3+</sup> hydrogel with different molar ratios of AA/AAm (a1: 6 mol%, a2: 8 mol%, a3: 10 mol%, and a4: 12 mol%) and different CS contents (b1: 1 wt%, b2: 2 wt%, and b3: 3 wt%).

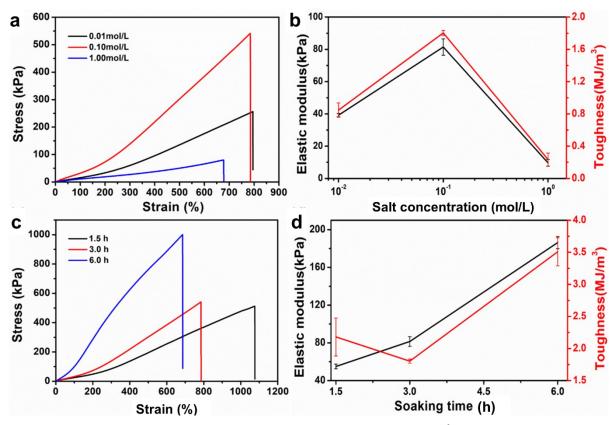



Figure S4. The stress-strain curves of the  $P(AAm-co-AA)/CS-Fe^{3+}$  hydrogel prepared by soaking in  $Fe(NO_3)_3$  solution with different concentrations (a) and soaking times (c); elastic modulus and toughness of the hydrogels as a function of  $Fe(NO_3)_3$  concentration (b) and soaking time (d)

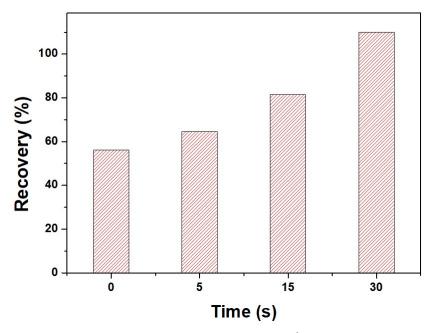



Figure S5. The recovery rate of the P(AAm-co-AA)/CS-Fe<sup>3+</sup> hydrogel at different rest times in cyclic tensile tests.

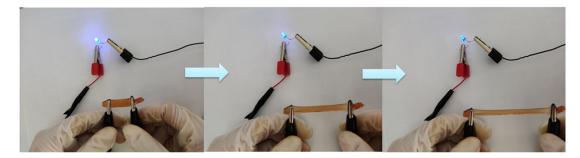



Figure S6. The LED brightness varies with different deformation.

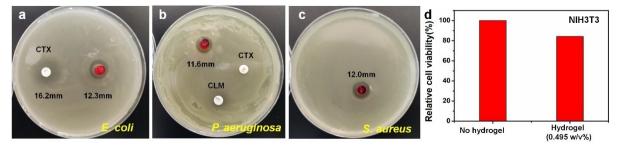



Figure S7. Antibacterial activity of the P(AAm-co-AA)/CS-Fe<sup>3+</sup> hydrogel on E. coli (a), P. aeruginosa (b) and S. aureus (c) evaluated by an inhibition zone method and relative viability of NIH3T3 cells incubated with the P(AAm-co-AA)/CS-Fe<sup>3+</sup> hydrogel by using a CCK-8 method. The red sample in a-c is the P(AAm-co-AA)/CS-Fe<sup>3+</sup> hydrogel and the white disc is cefotaxime (CTX) or chloramphenicol (CLM) used as positive control.