Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Skin-Like Wound Dressings with On-demand Administration Based on *in Situ* Peptide Self-Assembly for Skin Regeneration

Xiao-Ying Zhang ^{‡a, b}, Cong Liu ^{‡b}, Peng-Sheng Fan ^b, Xue-Hao Zhang ^b, Da-Yong Hou ^b, Jia-Qi Wang ^b, Hui Yang ^{*a}, Hao Wang ^{*b}, Zeng-Ying Qiao ^{*b}

^a Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
^b CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China

Fig. S1. a) The chemical structure and MALDI-TOF-MS spectrum of GPLK. b) HPLC spectrum of GPLK.

Fig. S2. a) The chemical structure and MALDI-TOF-MS spectrum of GPK. b) HPLC spectrum of GPK.

Fig. S3. a) The chemical structure and MALDI-TOF-MS spectrum of GLK. b) HPLC spectrum of GLK.

Fig. S4. The SF-GPLK film was preserved in atmospheric moisture.

Fig. S5. TEM image of SF-GPK immersed in Tris·HCl buffer solution (pH 7.4) the addition of gelatinase for 6 h. Scale bars, 0.1μm.

Fig. S6. TEM image of SF-GLK immersed in Tris·HCl buffer solution (pH 7.4) the addition of gelatinase for 6 h. Scale bars, 0.2μm.

Fig. S7. The chemical structure and MALDI-TOF-MS spectrum of LK.

Fig. S8. CACs for LK in solution.

Fig. S9. TEM image of LK (200 μ M). Scale bars, 0.2 μ m.

Fig. S10. The picture of bacteria counting colony-forming units treated by SF-GPLK, SF-GPLK, SF-GPLK and SF group.

Fig. S11. S. aureus quantitative analysis of live/dead staining in Fig 3d.

Fig. S12. Live/dead staining of L929 and HUVEC cells after incubation in PBS for 6 h.

Fig. S13. H&E staining on day 15 of the newly regenerated skin tissues in uninfected wound. Scale bar: 250 μ m. (Black arrows: epidermal scaly skin, yellow arrows: hair follicle, red arrows: inflammatory cells.)

Fig. S14. Body weight changes of uninfected mice during the treatment.

Fig. S15. H&E staining on day 15 of the newly regenerated skin tissues in infected wound. Scale bar: $250 \ \mu m$. (Black arrows: epidermal scaly skin, yellow arrows: hair follicle, red arrows: inflammatory cells, green arrows: new capillary, purple arrows: cornification).

Fig. S16. The picture of colony-forming units of bacteria from mice tissue on day 6 treated by SF-GPLK+EGF, SF+EGF, 3M Tegaderm and PBS group.

Fig. S17. Body weight changes of infected mice during the treatment.