Supplementary Information

Supramolecular assemblies of histidine-containing peptides with switchable hydrolase and peroxidase activities through Cu (II) binding and co-assembling

Yue Zhang,^a Xin Tian,^{*b} and Xinming Li^{*a}

^{a.} College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

^{b.} State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China. Email: xinmingli@suda.edu.cn; xtian@suda.edu.cn.

Contents

- 1. Materials and methods
- 2. Experimental section
- 3. Synthesis and characterizations of peptides (Fig. S1-S13)
- 4. Rheological measurements of peptide hydrogels (Fig. S14)
- 5. Determination of the critical self-assembling concentration of peptides (Fig. S15)
- 6. Steady state kinetic analysis of hydrolase-like activities of self-assembling peptides (Fig. S16)
- 7. CD spectra of peptide- Cu^{2+} complexes (Fig. S17)
- 8. FT-IR spectra of peptide-Cu²⁺ complexes (Fig. S18)
- 9. MALDI-TOF mass spectrometry of peptide-Cu²⁺ complexes (Fig. S19-S24)
- TEM images of histidine-containing peptides and peptide-Cu²⁺ complexes (Fig. S25)
- 11. Hydrolysis of *p*-NPA by FH_{Cu} (Fig. S26)
- 12. Optical images of different solutions for TMB oxidation (Fig. S27)
- 13. Peroxidase-like catalytic activity of peptide-Cu²⁺ complexes (Fig. S28)
- 14. Effects of metal ions on the catalytic activity of peptide-metal complexes (Fig. S29)
- 15. Determination of the optimum ratio of peptides to Cu²⁺ ions (Fig. S30)
- 16. Determination of reactive oxygen species involved in the process of TMB oxidation (Fig. S31)
- 17. Steady state kinetics assays of peptide-Cu²⁺ complexes (Fig. S32)
- 18. Biostability tests of peptide and peptide-Cu²⁺ complexes (Fig. S33)
- 19. The viabilities of HUVECs treated by KH and KH_{Cu} (Fig. S34)

1. Materials and methods

2-chlorotrityl chloride resin, Fmoc-His(Trt)-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Lys(Boc)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Phe-OH and obenzotriazol-1-yl-tetramethyluronium hexafluorophosphate (HBTU) were purchased from GL Biochem (Shanghai, China). 2-(naphthalen-6-yl) acetic acid was provided by Aladdin (Shanghai, China). Piperidine, trifluoroacetic acid (TFA) and N,Ndiisopropylethylamine (DIEA) were from Energy Chemical and Adamas, respectively. 10 mM phosphate buffered solution was obtained by Sangong Bioengineering (Shanghai, China). p-nitrophenol acetate and p-nitrophenol were provided by Shanghai Aladdin Biochemical Technology. CuCl₂·2H₂O and other metal compounds was provided by Sinopharm Chemical Reagent (Suzhou, China). Superoxide dismutase was supplied by Shanghai Yuanye Biotechnology. Horse radish peroxidase (300 unit/mg) was provided by Shanghai Baoman Biological Technology. Proteinase from aspergillus melleus (≥ 3.0 unit/mg) was purchased from Sigma-Aldrich. 3,3',5,5'-tetramethylbenzidine (TMB) was provided by Macklin and tertiary butanol were purchased from Aladdin. ¹H NMR spectra were recorded on the Unity Inova 400 MHz by using DMSO-d6 as the solvent. MALDI-TOF mass spectrometry analysis was conducted on the Bruker Ultraflex-Treme mass spectrometer (Germany). Rheological tests were performed on the Thermo Scientific HAAKE RheoStress 6000 rheometer (Germany). Circular dichroism spectra (CD) were collected from the JASCO J-810 spectrometer (Japan). Fourier transform infrared spectroscopy (FTIR) characterizations were carried out on the PerkinElmer spectrophotometer (USA). Transmission electron micrograph (TEM) images were recorded on the Hitachi HT7700 TEM. UV-Vis spectroscopy analysis was performed on the UV-1900i (Shimadzu (Suzhou) Instrument Co. LTD, China). Fluorescence spectra were obtained from F-2700 fluorescence spectrophotometer (Japan) and BioTek Synergy Neo microplate reader. High Performance Liquid Chromatography (HPLC) analysis were conducted on a Waters 2489 with UV/Visible Detector by using CH₃CN (0.1% of TFA) and H₂O (0.1% of TFA) as eluents.

2. Experimental section

2.1 Peptide Synthesis: Histidine-containing peptides were synthesized from corresponding amino acids by using the solid-phase peptide synthesis (SPPS) technique with the application of 2-chlorotrityl chloride resin (100-200 mesh and 1.3-1.8 mmol/g). First, 0.5 g resin was swelled in dry dichloromethane (DCM) with N_2 bubbling for 30 min and the swelled resin was washed by dry N,Ndimethylformamide (DMF) for five times. Then the DMF solution containing N,Ndiisopropylethylamine (DIEA) and Fmoc-His(Trt)-OH was added to react for 1.5 h and the resin was washed with dry DMF for four times. Afterward, the blocking solution (16:3:1 of DCM / MeOH / DIEA) was added to quench the unreacted sites on the resin for 10 min, and the resin was rinsed thoroughly with dry DMF. Then the resin was treated with 20 % piperidine (in DMF) for 0.5 h to remove Fmoc-protecting groups, and washed with DMF for four times. The designed molecule was elongated step by step by following standard Fmoc solid phase peptide synthesis protocols, and HBTU was used as a coupling reagent. Ultimately, the synthetic peptide was cleaved from the resin by using cleavage cocktail (TFA: $H_2O = 95:5$). The final yields of synthetic peptides were about 69 %.

NapFFH: ¹H NMR (400 MHz, DMSO-*d*6): δ 8.73 (s, 1H), 8.43 (d, J = 7.9 Hz, 1H), 8.27 (d, J = 8.4 Hz, 1H), 8.20 (d, J = 8.0 Hz, 1H), 7.88-7.82 (m, 1H), 7.81-7.71 (m, 2H), 7.58 (s, 1H), 7.52-7.43 (m, 2H), 7.28 (s, 1H), 7.23 (d, J = 4.3 Hz, 4H), 7.20-7.12 (m, 7H), 4.60-4.48 (m, 3H), 3.11 (dd, J = 15.2, 5.5 Hz, 2H), 3.05-2.92 (m, 4H), 2.83 (dd, J = 14.0, 9.2 Hz, 1H), 2.70 (dd, J = 13.9, 10.4 Hz, 1H). MS: calcd M = 617.2638, obsd (M + H)⁺ = 618.276, obsd (M + Na)⁺ = 640.292.

NapFFHH: ¹H NMR (400 MHz, DMSO-*d*6): δ 8.91 (d, J = 23.8 Hz, 2H), 8.49-8.16 (m, 4H), 7.86-7.82 (m, 1H), 7.78-7.70 (m, 2H), 7.57 (s, 1H), 7.50-7.42 (m, 2H), 7.38 - 7.10 (m, 13H), 4.54 (ddd, J = 19.5, 12.6, 8.4 Hz, 4H), 3.14 (ddd, J = 15.8, 13.0, 5.4 Hz, 2H), 3.07-2.88 (m, 5H), 2.87-2.65 (m, 3H). MS: calcd M = 754.3227, obsd (M + H)⁺ = 755.298, obsd (M + Na)⁺ = 777.286.

NapFFRH: ¹H NMR (400 MHz, DMSO-*d*6): $\delta = 8.40$ (d, J=7.6, 1H), 8.26 (ddd, J=24.9, 17.4, 7.9, 3H), 8.11 (d, J=8.0, 1H), 7.89-7.83 (m, 1H), 7.76 (dd, J=14.0, 7.7,

2H), 7.59 (s, 1H), 7.53-7.43 (m, 3H), 7.30-7.05 (m, 10H), 4.62-4.47 (m, 3H), 4.35-4.28 (m, 1H), 3.13-3.01 (m, 4H), 3.00-2.92 (m, 2H), 2.90-2.77 (m, 2H), 2.71 (dd, J=13.9, 10.3, 2H), 1.70 (s, 1H), 1.51 (s, 3H). MS: calcd M = 773.3649, obsd (M + H)⁺ = 774.533, obsd (M + Na)⁺ = 796.529.

NapFFKH: ¹H NMR (400 MHz, DMSO-*d*6): $\delta = 8.88$ (s, 1H), 8.25 (ddd, J=39.4, 30.4, 8.0, 4H), 7.85 (d, J=7.2, 1H), 7.76 (dd, J=13.8, 7.9, 4H), 7.58 (s, 1H), 7.47 (tt, J=12.4, 6.2, 2H), 7.36 (s, 1H), 7.25-7.11 (m, 10H), 4.53 (ddd, J=18.4, 13.4, 6.1, 3H), 4.25 (dd, J=13.5, 8.0, 1H), 3.16 (dd, J=15.3, 5.2, 2H), 3.06-2.99 (m, 2H), 2.98-2.87 (m, 2H), 2.75 (ddd, J=36.2, 14.1, 10.0, 4H), 1.70-1.46 (m, 4H), 1.30 (s, 2H). MS: calcd M = 754.3588, obsd (M + H)⁺ = 746.427, obsd (M + Na)⁺ = 768.406.

NapFFDH: ¹H NMR (400 MHz, DMSO-*d*6): $\delta = 8.95$ (s, 1H), 8.26 (ddd, *J*=42.5, 38.4, 7.7, 4H), 7.85 (d, *J*=7.2, 1H), 7.75 (dd, *J*=12.9, 7.9, 2H), 7.58 (s, 1H), 7.51-7.41 (m, 2H), 7.36 (d, *J*=16.4, 1H), 7.33-7.09 (m, 11H), 4.59-4.48 (m, 4H), 3.16 (dd, *J*=15.2, 5.0, 1H), 3.07-3.00 (m, 2H), 3.00-2.95 (m, 1H), 2.92 (d, *J*=3.7, 1H), 2.80-2.75 (m, 1H), 2.74 (s, 1H), 2.72-2.63 (m, 2H), 2.55 (d, *J*=8.2, 1H). MS: calcd M = 732.2908, obsd (M + H)⁺ = 733.374, obsd (M + Na)⁺ = 755.360.

NapFFSH: ¹H NMR (400 MHz, DMSO-*d*6): $\delta = 8.93$ (s, 1H), 8.34-8.12 (m, 4H), 7.85 (d, J=7.1, 1H), 7.75 (dd, J=13.6, 7.9, 2H), 7.58 (s, 1H), 7.51-7.42 (m, 2H), 7.37 (d, J=15.0, 1H), 7.31-7.10 (m, 10H), 4.67-4.46 (m, 3H), 4.32 (dd, J=12.9, 5.7, 1H), 3.59 (d, J=5.2, 2H), 3.19 (d, J=5.3, 1H), 3.15 (d, J=5.0, 1H), 3.10-2.99 (m, 2H), 2.95 (dd, J=13.8, 3.8, 1H), 2.83-2.77 (m, 1H), 2.74 (t, J=5.2, 1H), 2.72-2.65 (m, 1H). MS: calcd M = 704.2958, obsd (M + H)⁺ = 705.453, obsd (M + Na)⁺ = 727.426.

2.2 TEM Characterizations: Each peptide sample (5 μ L) was placed on a carboncoated copper grid and then stained with phosphotungstic acid (2.0 % w/v) for 13-15 min. After air-drying, the nanostructures within sample were recorded by the transmission electron microscope (Hitachi HT7700).

2.3 CD and FTIR Characterizations: CD spectra were recorded on a Jasco J-810 spectrometer. 25 μ L of sample were loaded into a 1 mm thick quartz cell and scanned from 185 nm to 300 nm under N₂ atmosphere. FTIR spectra were collected with a PerkinElmer spectrophotometer. The sample was loaded into a KBr cuvette using

deuterium oxide (D_2O) as a solvent. All spectra were scanned 64 times over the range of 3500-900 cm⁻¹.

2.4 Rheological Tests: Rheological properties of hydrogels were tested on the rheometer (Thermo Scientific HAAKE RheoStress 6000) at 25 °C. First, 300 μ L of hydrogels were placed on a 20 mm parallel plate. (i) Dynamic strain sweep tests were implemented from 0.1 to 10% strain with a fixed angular frequency at 6.282 rad/s. (ii) Dynamic frequency sweeps was carried out from 0.628 to 628 rad/s at a fixed strain of 1.0 %.

2.5 Determination of the critical self-assembling concentration of histidinecontaining peptides: A series of histidine-containing peptides solutions with the concentration from 50 to 3000 µg/mL were prepared in PBS buffer. After incubating with Thioflavin T (20 µM) for 12 h in dark, the fluorescence intensities of the peptide solutions containing Thioflavin T were measured on a F-2700 fluorescence spectrophotometer at 25 °C ($\lambda_{ex} = 440$ nm, $\lambda_{em} = 490$ nm). The critical self-assembling concentration of peptides was obtained according to the dose-dependent curve plotted with fluorescence intensities of Thioflavin T versus varied concentrations of peptides.

2.6 Determination of the hydrolase-like activities of self-assembling peptides: Hydrolysis kinetics was tested by adding different amounts of *p*-NPA into the PBS buffer (pH 7.4 and 10 mM) containing each self-assembling peptide (1×10^{-4} M) and the absorbance at 400 nm was monitored by using a UV-vis spectrophotometer (UV-1900i) at 25 °C. The rate constants for *p*-NPA hydrolysis by different peptides were

calculated based on the Michaelis-Menten equation: $v_0 = \frac{V_{maxim}[S]}{K_M + [S]}$. v_0 is the initial velocity; K_M is the Michaelis constant; [S] is the concentration of substrate; and V_{max} is the maximal reaction velocity.

2.7 Preparation of peptide-Cu²⁺ complexes: Histidine-containing peptides were dissolved in ultrapure water followed by adjustment of pH to 9.0, and then mixed with Cu^{2+} ions. The mixture was subject to sonication together with pH adjustment to produce a uniformly dispersed solution. Ultimately, the solutions were heated in water bath to 60 °C and incubated at room temperature for 0.5 h.

2.8 Determination of the peroxidase-like catalytic activity: The peroxidase-like catalytic activity was determined by adding 10 µL of TMB solution $(2 \times 10^{-2} \text{ M in} \text{ acetonitrile solution})$ and 20 µL of H₂O₂ (0.25 M) into 930 µL of PBS buffer $(1 \times 10^{-2} \text{ M, pH 7.4})$. The mixture was homogenized by vortexing and then was incubated under 25 °C in a 10 mm path length quartz cuvette. The reaction was initiated by adding 40 µL of the peptide-Cu²⁺ complexes $(5 \times 10^{-3} \text{ M})$. The oxidized product of TMB (oxTMB) was quantified by monitoring the absorbance at 640 nm using a UV-vis spectrophotometer (UV-1900i). The initial reaction rate (v_0) for oxTMB production was determined to represent the catalytic activity of the peroxidase mimics.

2.9 Kinetics Analysis: The reaction kinetics of the peroxidase mimics were established using a steady-state assay. The initial reaction rate for the reactions was determined by fixing the concentrations of one substrate and changing the other. Kinetic parameters were calculated based on the Michaelis-Menten equation.

2.10 Determination of reactive oxygen species involved in the process of TMB oxidation: The reactive oxygen species were determined by adding 20 μ L of SOD (3 \times 10⁻³ M in PBS buffer) or 20 μ L of TBA (3 M in ultrapure water) to the system of catalytic peptide-Cu²⁺, which contained 10 μ L of TMB solution (2 \times 10⁻² M in acetonitrile solution), and 20 μ L of H₂O₂ (5 \times 10⁻² M in ultrapure water) in 910 μ L of PBS buffer (1 \times 10⁻² M, pH 7.4). The mixture was homogenized by vortexing and then was incubated under 25 °C in a 10 mm path length quartz cuvette. The reaction was initiated by adding 40 μ L of peptide-Cu²⁺ complexes (5 \times 10⁻³ M). The production of oxidized TMB (oxTMB) was quantified by monitoring the absorbance at 640 nm using a UV-vis spectrophotometer (UV-1900i).

2.11 Biostability tests of peptides and peptide-Cu²⁺ complexes: peptides or peptide-Cu²⁺ complexes were dissolved in PBS buffer (1×10^{-2} M, pH 7.4) to yield a solution with a concentration at 0.02 wt%, followed by the addition of proteinase K (3.2 units/mL) at 37 °C. At each specific time, 200 µL of the solution was removed and the contents of the components in the solution were analyzed by High Performance Liquid Chromatography (HPLC).

2.12 Cell Compatibility: The compatibility of KH or KH_{Cu} with Human umbilical vein endothelial cells (HUVECs) was evaluated via the CCK-8 kit assay. Briefly, the cells were seeded into 96-well plates at a density of 8×10^3 cells per well with 90 µL of DMEM medium. After overnight incubation, the cells were treated by KH or KH_{Cu} in different concentrations (10, 20, 50 and 100 µM). Untreated HUVECs were used as controls. After incubated for 24 h, the medium was replaced with CCK-8 solution (100 µL, 10%) and then incubated for 3 h. Finally, the absorbance of the formazan product was measured at 450 nm by using a microplate reader.

3. Synthesis and characterizations of peptides

i) Fmoc-His(Trt)-OH, DIEA; ii) 20 % piperidine, DMF; iii) Fmoc-Phe-OH, HBTU, DIEA; iv) Fmoc-Phe-OH, HBTU, DIEA; v) 2-naphthalene acetic acid, HBTU, DIEA; vi) TFA : water(95 : 5)

- i) Fmoc-His(Trt)-OH, DIEA; ii) 20 % piperidine, DMF; iii) Fmoc-His(Trt)-OH or Fmoc-Arg(Pbf)-OH or Fmoc-Lys(Boc)-OH or Fmoc-Asp(OtBu)-OH or Fmoc-Ser(tBu)-OH ,HBTU, DIEA;
- iv) Fmoc-Phe-OH, HBTU, DIEA; v) Fmoc-Phe-OH, HBTU, DIEA;
- vi) 2-naphthalene acetic acid, HBTU, DIEA; vii) TFA : water (95 : 5)

Fig. S2. ¹H NMR of FH in DMSO-*d6*.

Fig. S3. ¹H NMR of HH in DMSO-*d6*.

Fig. S4. ¹H NMR of RH in DMSO-*d6*.

Fig. S5. ¹H NMR of KH in DMSO-*d6*.

Fig. S6. ¹H NMR of DH in DMSO-*d6*.

Fig. S7. ¹H NMR of SH in DMSO-*d6*.

Fig. S8. MALDI-TOF mass spectrum of FH.

Fig. S9. MALDI-TOF mass spectrum of HH.

Fig. S10. MALDI-TOF mass spectrum of RH.

Fig. S11. MALDI-TOF mass spectrum of KH.

Fig. S12. MALDI-TOF mass spectrum of DH.

Fig. S13. MALDI-TOF mass spectrum of SH.

4. Rheological measurements of peptide hydrogels

Fig. S14. (A) Strain dependence and (B) frequency dependence of the dynamic storage moduli (G') and the loss moduli (G'') of histidine-containing peptides.

5. Determination of the critical self-assembling concentration of peptides

Fig. S15. The dose-dependent curves plotted with fluorescence intensities of Thioflavin T (2.0×10^{-5} M) versus varied concentrations of peptides.

6. Steady state kinetic analysis of hydrolase-like activities of self-assembling peptides

Fig. S16. (A-F) Michaelis-Menten curves for the hydrolysis of p-NPA (0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0 and 10.0 mM) by histidine-containing peptides (0.1 mM).

	V _{max} (×10 ⁻⁵ mM s ⁻¹)	$K_{\rm M}$ (mM)	$k_{\rm cat} (\times 10^{-3} {\rm s}^{-1})$	$k_{\rm cat} / K_{\rm M} ({\rm M}^{-1} {\rm s}^{-1})$
FH	19.61	0.93	1.96	2.11
HH	3.69	2.56	0.37	0.14
RH	13.74	5.68	1.37	0.24
KH	11.32	4.19	1.13	0.27
DH	12.42	5.32	1.24	0.23
SH	10.88	8.80	1.01	0.12

Table S1. Apparent kinetic parameters (k_{cat} , K_M and (k_{cat}/K_M) for the hydrolysis of *p*-NPA catalyzed by different catalytic peptides in 10 mM PBS buffer under 25 °C

Table S2. Kinetic parameters for *p*-NPA hydrolysis by FH at different concentrations

FH (mM)	V _{max} (×10 ⁻⁵ mM s ⁻¹)	$K_{\rm M}$ (mM)	$k_{\rm cat} (\times 10^{-3} {\rm s}^{-1})$	$k_{\rm cat}$ / $K_{\rm M}$ (M ⁻¹ s ⁻¹)
0.1	19.61	0.93	1.96	2.11
0.2	38.10	1.03	1.91	1.85
0.4	77.50	0.93	1.94	2.09

7. CD spectra of peptide-Cu²⁺ complexes

Fig. S17 CD spectra of histidine-containing peptides (5.0 mM) and peptide- Cu^{2+} complexes (5.0 mM) in PBS buffer (10 mM).

8. FT-IR spectra of peptide-Cu²⁺ complexes

Fig. S18. FT-IR spectra of histidine-containing peptides (5.0 mM) and peptide- Cu^{2+} complexes (5.0 mM) in PBS buffer (10 mM). The mole ratio of peptides to Cu^{2+} ions was 1 : 0.8.

9. MALDI-TOF mass spectra of peptide-Cu²⁺ complexes

Fig. S19. MALDI-TOF mass spectrum of FH_{Cu}.

Fig. S20. MALDI-TOF mass spectrum of HH_{Cu} .

Fig. S21. MALDI-TOF mass spectrum of RH_{Cu}.

Fig. S22. MALDI-TOF mass spectrum of KH_{Cu}.

Fig. S23. MALDI-TOF mass spectrum of DH_{Cu}.

Fig. S24. MALDI-TOF mass spectrum of SH_{Cu} .

10. TEM images of histidine-containing peptides and peptide-Cu²⁺ complexes

Fig. S25. TEM images of self-assembled nanostructures within hydrogels of histidinecontaining peptides (Images of A-F represent FH, HH, RH, KH, DH and SH, respectively) and peptide-Cu²⁺ complexes (Images of G-L represent FH_{Cu} , HH_{Cu} , RH_{Cu} , KH_{Cu} , DH_{Cu} and SH_{Cu} , respectively).

11. Hydrolysis of *p*-NPA by FH_{Cu}

Fig. S26. Catalytic activities of FH_{Cu} for the hydrolysis of *p*-NPA, [FH] = 0.1 mM, [p-NPA] = 0.5 mM. The mole ratio of FH to Cu^{2+} ions was set as 1 : 0.05, 1 : 0.1, 1 : 0.2.

12. Optical images of different solutions for TMB oxidation

Fig. S27. Optical images of different test solutions for TMB oxidation. (A) Different sample solutions containing 0.4 mM of peptide-Cu²⁺ complexes, 0.3 mM of TMB and 2.0 mM of H₂O₂ for the oxidation of TMB at 25 °C. (B) Different sample solutions containing 0.4 mM of peptides, 0.3 mM of TMB and 2.0 mM of H₂O₂. (C) Sample

solutions 0.4 mM of peptide-Cu²⁺ complexes, 0.3 mM of TMB, but without H_2O_2 . The mole ratio of peptide to Cu²⁺ ions was 1 : 1.

13. Peroxidase-like catalytic activities of peptide-Cu²⁺ complexes

Fig. S28. Time dependent absorbance at 640 nm for the oxidization of TMB catalysed by different peptide- Cu^{2+} complexes in 10 mM PBS buffer (pH 7.4) at 25 °C, (A) TMB + H₂O₂; (B) peptide- Cu^{2+} + TMB + H₂O₂; (C) Cu^{2+} + TMB + H₂O₂; (D) peptide + TMB + H₂O₂; (E) peptide- Cu^{2+} + TMB; (F) Cu^{2+} + TMB. Reaction conditions: [peptide- Cu^{2+}] = 0.4 mM, [Cu^{2+}] = 0.4 mM, [TMB] = 0.3 mM, [H₂O₂] = 3.0 mM, and the mole ratio of peptide to Cu^{2+} ions was 1 : 1.

Fig. S29. Effects of metal ions on the catalytic activity of peptide-metal complexes. (A) RH-metal + TMB + H_2O_2 ; (B) KH-metal + TMB + H_2O_2 . Reaction conditions: [peptide-metal] = 0.4 mM, [TMB] = 0.2 mM, [H_2O_2] = 5.0 mM, and the mole ratio of peptide to metal ions was 1 : 0.8.

15. Determination of the optimum ratio of peptides to Cu²⁺ ions

Fig. S30. Time dependent absorbance at 640 nm for the oxidization of TMB catalyzed by peptide-Cu²⁺ complexes in different ratios of peptides to Cu²⁺ ions. (A) FH_{Cu} + TMB + H₂O₂; (B) HH_{Cu} + TMB + H₂O₂; (C) RH_{Cu} + TMB + H₂O₂; (D) KH_{Cu} + TMB + H₂O₂; (E) DH_{Cu} + TMB + H₂O₂; (F) SH_{Cu} + TMB + H₂O₂. Reaction conditions: [peptide-Cu²⁺] = 0.4 mM, [TMB] = 0.2 mM, [H₂O₂] = 5.0 mM, and the inset showed the mole ratio of peptides to Cu²⁺ ions.

16. Determination of reactive oxygen species involved in the process of TMB oxidation (按手稿描述,将 16 和 17 调换顺序)

Fig. S31. Determination of reactive oxygen species involved in the process of TMB oxidation in 10 mM PBS buffer (pH 7.4) at 25 °C. (A) $FH_{Cu} + TMB + H_2O_2 + SOD / TBA$; (B) $HH_{Cu} + TMB + H_2O_2 + SOD / TBA$; (C) $RH_{Cu} + TMB + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + TMB + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + TMB + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + TMB + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + TMB + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + TMB + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + TMB + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + H_2O_2 + SOD / IBA$; (C) $RH_{Cu} + IBA + IBA$

TBA; (D) $KH_{Cu} + TMB + H_2O_2 + SOD / TBA$; (E) $DH_{Cu} + TMB + H_2O_2 + SOD / TBA$; (F) $SH_{Cu} + TMB + H_2O_2 + SOD / TBA$. Reaction conditions: [peptide-Cu²⁺] = 0.4 mM, [TMB] = 0.2 mM, [H₂O₂] =1.0 mM, [SOD] = 60 μ M, [TBA] = 60 mM, and the mole ratio of peptide to Cu²⁺ ions was 1 : 0.8.

Fig. S32 Steady-state kinetic assays of HRP for the oxidation of TMB. The velocity (v) of the reaction was measured using 10⁻⁶ mM HRP in 1 mL of 1.0×10^{-2} M PBS buffer (pH 7.4) at 25 °C. (A) The Michaelis-Menten curve of HRP for the oxidation of TMB by fixing the TMB concentration at 0.4 mM and varying H₂O₂ concentrations. (B) The Michaelis-Menten curve of HRP for the oxidation of TMB by fixing the H₂O₂ concentration at 3.0 mM and varying TMB concentrations.

Catalyst	Substrate	K _M	V _{max} (×10-8	k _{cat}	$k_{\rm cat}$ / $K_{\rm M}$
		(mM)	M s ⁻¹)	(s ⁻¹)	(M ⁻¹ s ⁻¹)
FH _{Cu}	TMB	0.77	6.76	3.38×10 ⁻⁴	0.44
FH _{Cu}	H_2O_2	7.77	5.22	2.61×10-4	0.03
HH _{Cu}	TMB	4.32	22.6	11.3×10 ⁻⁴	0.26
HH _{Cu}	H_2O_2	4.84	7.76	3.88×10-4	0.08
RH _{Cu}	TMB	0.40	10.80	5.40×10 ⁻⁴	1.35
RH _{Cu}	H_2O_2	2.32	19.02	9.51×10-4	0.41
KH _{Cu}	TMB	1.28	53.36	26.68×10-4	2.08
KH _{Cu}	H_2O_2	1.11	34.80	17.40×10 ⁻⁴	1.57

Table S3. Kinetic parameters of TMB oxidation by peptide-Cu²⁺ complexes and HRP

DH _{Cu}	TMB	1.90	5.52	2.76×10 ⁻⁴	0.15
DH _{Cu}	H_2O_2	7.61	4.02	2.01×10 ⁻⁴	0.03
SH _{Cu}	TMB	0.79	11.2	5.06×10 ⁻⁴	0.64
SH _{Cu}	H_2O_2	16.22	22.32	11.16×10-4	0.07
HRP	TMB	0.055	9.73	97.3	1.78×10^{6}
HRP	H_2O_2	0.040	8.30	83.0	2.08×10 ⁶

18. Biostability tests of peptides and peptide-Cu²⁺ complexes

Fig. S33. Quantitative data about the degradation ratio of (A-F) different peptides (FH, HH, RH, KH, DH and SH), and (G-L) their corresponding peptide- Cu^{2+} complexes (FH_{Cu}, HH_{Cu}, RH_{Cu}, KH_{Cu}, DH_{Cu} and SH_{Cu}) by proteinase K (3.2 units/mL) at 37 °C.

19. The viabilities of HUVECs treated by KH and $\mathrm{KH}_{\mathrm{Cu}}$

Fig. S34. Cytotoxicity tests of KH, and the corresponding Cu^{2+} complex (KH_{Cu}) towards HUVEC cells over the course of 24 h.