Supporting Information

A Combination of Graphene Quantum Dots-Cationic Red Dye Donor-Acceptor Pair and Cucurbit[7]uril as Supramolecular Sensor for Ultrasensitive Detection of Cancer Biomarkers Spermine and Spermidine

Akhil A. Bhosle,^a Mainak Banerjee,^{*a} Sharanabasava D. Hiremath,^a Dilawar S. Sisodiya,^a Viraj G. Naik,^a Nilotpal Barooah,^b Achikanath C. Bhasikuttan,^{b,c} Anjan Chattopadhyay,^a Amrita Chatterjee^{*a}

^aDepartment of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, INDIA

^bRadiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, INDIA

°Homi Bhabha National Institute, Anushaktinagar, Mumbai, INDIA

Corresponding Authors

*E-mail: mainak@goa.bits-pilani.ac.in. Phone: +91-832-2580-347. Fax: +91-832-255-7031 (M.B.).

*E-mail: amrita@goa.bits-pilani.ac.in. Phone: +91-832-2580-320. Fax: +91-832-255-7031 (A.C.).

Sr. No.	Contents					
1.	Synthesis of hydroxy graphene quantum dots (HO-GQDs)	S3				
2.	IR spectra of GQDs (Figure S1)	S3				
3.	UV-vis and fluorescence response of BPBP at different pH (Figure S2)	S4				
4.	Fluorescence response of GQDs + BPBP upon addition of CB[7] (Figure S3)	S5				
5.	DFT optimized structures of BPBP and GQDs (Figure S4)	S6				
6.	Predicted absorption peaks of the components in different forms at the TDDFT level (Table S1)	S7				
7.	Predicted electron cloud for GQDs-BPBP complexes in HOMO and LUMO states at TDDFT level (Table S2)	S7-S8				
8.	Fluorescence response of BPBP upon addition of CB[7] (Figure S5)	S 8				
9.	Fluorescence response of BPBP + CB[7] upon addition of spermidine (Figure S6)	S9				
10.	Fluorescence responses of BPBP + CB[7] with various biogenic amines, metal ions, anions, amino acids, and neutral molecules (Figures S7 and S8)	S9-S10				
11.	Job's plot for the stoichiometry of spermine and spermidine with CB[7]	S10				

Table of Contents

	11 (7) (20)	
	in two-component assembly (Figure S9)	
12.	UV-vis responses of BPBP on the addition of CB[7] and further upon	S11
	addition of spermine and spermidine (Figure S10)	~
13.	Fluorescence response of $GQDs + BPBP + CB[7]$ upon addition of	S11
	spermidine and at a lower concentration range (LOD study) (Figure S11)	~
14.	UV-vis responses of GQDs upon addition of BPBP and CB[7] and	S12
	further upon addition of spermine and spermidine (Figure S12)	~
	Percentage fluorescence quenching of the supramolecular assembly with	
15.	various metal ions, anions, amino acids, and neutral molecules (Figure	S13
	<u>S13)</u>	
16	Effect of pH on the relative emission intensities of the sensing assembly	\$14
10.	in the presence and absence of spermine (Figure S14)	517
17.	Time-resolved spectroscopy data for two-component sensing assembly	S 14
	(Table S3)	517
18.	ITC study for the stoichiometry of CB[7] with BPBP (Figure S15)	S15
19	Job's plot for the stoichiometry of spermidine with CB[7] in three-	01(
17.	component assembly (Figure S16)	510
20.	DFT optimized structures of CB[7]:SP (Figure S17)	S16
21.	Time-resolved spectroscopy data for three-component sensing assembly	S17
	(Table S4)	517
22.	DLS for three-component sensing assembly (Figure S18)	S18
23.	Zeta potential for three-component sensing assembly (Table S5)	S18
24	Vapor phase sensing of SP/SPD by two-component and three-component	S10
	sensing systems (Figure S19)	519
25	Vapor phase SP/SPD recovery data for the two-component and three-	520
20.	component supramolecular sensor (Table S6)	520
26	Comparative study for dye-cavitand host-guest sensors of SP/SPD	621 622
20.	(Table S7)	521-522
27	Comparative study for selected supramolecular sensing strategies for	522 524
	SP/SPD. (Table S8)	523-524
28.	References	S25-S27
29	NMD Supportug	630 630
	NMK Spectra	528-529

Experimental Procedure

Synthesis of hydroxy graphene quantum dots (HO-GQDs):¹ Pyrene (0.2 g) was refluxed in conc. HNO₃ (16 mL) at 95 °C for 12 h. The mixture was then cooled to room temperature and diluted with 100 mL of deionized water, and filtered to obtain yellow 1,3,6- trinitropyrene (0.26 g). Next, the yellow product was dispersed in a 60 mL of 0.2 M NaOH solution by ultrasonication for 2 h. Then the suspension was transferred to a Teflon autoclave container and heated at 200 °C for 10 h. The product containing water-soluble GQDs was filtered through a 0.22 μ m microporous membrane to remove insoluble carbon product after cooling to room temperature and further dialyzed in a dialysis bag (retained molecular weight: 10,000 Da) for 2 days to remove sodium salt and unfused small molecules. The purified black OH-GQDs were dried at 80 °C and characterized using standard techniques.

Figure S1. IR spectra confirm the presence of hydroxyl groups in the HO-GQDs.

Figure S2. (a) Protonated and deprotonated forms of BPBP; (b) Response of BPBP at different pH in UV-vis; (c) fluorimetric responses of BPBP at different excitation wavelengths and pH;
(d) Response of BPBP at different pH in fluorimetric studies; (e) Plot of % fluorescence v/s pH for determination of pK_a.

Figure S3. The fluorimetric responses of GQDs (5 μ L, 1 mg/mL) + **BPBP** (30 μ M) upon the addition of CB[7] (0-100 μ M) showed an increase in intensity at 535 nm and a simultaneous ratiometric decrease in intensity at 730 nm [GQDs: λ_{ab} 370 nm, λ_{em} 545 nm; **BPBP**: λ_{ab} 519 nm, λ_{em} 730 nm].

Figure S4. Optimized structures of (a) ground state and excited state **BPBP-A**; (b) ground state and excited state **BPBP-B**; (c) GQDs; (d) GQDs:BPBP complex top view; (e) HOMO \rightarrow LUMO excitation of GQDs-BPBP-B which dominates the 526 nm peak (S₀-S₁) and LUMO+2 orbitals GQDs-BPBP-A and GQDs-BPBP-B involved in the quenching of GQDs fluorescence and (f) A schematic representation of the fate of photo-excitations of GQDs-BPBP-A and GQDs-BPBP-B.

Table S1. Predicted absorption peak positions (with oscillator strength of the transition and dominating excitations in %) and emission peak positions of **BPBP** forms in water at TDDFT level.

	Predicted Absorption		Contributed by excitations (with major
peak positions (at		strength of the	contributions in %)
	TDDFT) λ_{abs} (nm)	transition	
BPBP-A	361 $(\lambda_{em} = 464 \text{ nm})$	1.6992	H→L (73%), H-1→L (13%)
BPBP-B	550	1.3620	H→L (89%)
	400 $(\lambda_{em} = 708 \text{ nm})$	0.1940	H→L+1 (67%), H-1→L (26%)
BPBP-A-	416	0.8893	H→L (83%)
CB [7] (1:1)	343	0.6318	H-1→L (75%)
BPBP-A-	399	0.898	H→L (65%), H→L+1 (11%)
CB [7] (2:1)	351	0.1029	H→L+1 (55%), H-1→L (22%)
GQDs	376	0.3222	
GQDs-BPBP-	376	0.2786	H→L+2 (76%), H-1→L+3 (14%)
Α	350	0.4137	H-3→L (55%), H-4→L (16%), H-
			$5 \rightarrow L+1 (10\%)$
GQDs-BPBP-	526	0.6896	H→L (84.5%)
B	378	0.1959	H→L+2 (66%), H-4→L(15%)
	365	0.1019	H→L+1 (72%)

Table S2. Some important orbitals of GQDs-BPBP-A and GQDs-BPBP-B contributing to the mentioned absorption peaks

Figure S5. Fluorescence response of **BPBP** (30 μ M) upon addition of CB[7] (0-80 μ M) shows a decrease in intensity along with a visual color change from red to yellow [λ_{ex} 519 nm, λ_{em} 730 nm].

Figure S6. (a) Fluorescence response of **BPBP** (30 μ M) + CB[7] (60 μ M) upon addition of spermidine (0-80 μ M) [λ_{ex} 519 nm, λ_{em} 730 nm]; (b) Fluorescence response of sensing assembly containing 30 μ M **BPBP** at the lower concentration range for spermidine (0–2.5 μ M) [λ_{ex} 519 nm, λ_{em} 730 nm].

Figure S7. Fluorescence response of the two-component supramolecular assembly against biogenic amines [λ_{ex} 519 nm, λ_{em} 730 nm].

Figure S8. Fluorescence response of the two-component supramolecular assembly against (a) metal ions; (b) anions; (c) amino-acids; (d) neutral molecules [λ_{ex} 519 nm, λ_{em} 730 nm].

Figure S9. Job's plot for the determination of the stoichiometry of BPBP:CB[7] twocomponent assembly [**BPBP** (30 μ M), CB[7] and SP/SPD concentration varied between 0-30 μ M (λ_{ex} 519 nm; λ_{em} 730 nm).

BPBP $(30 \ \mu\text{M}) + \text{CB}[7] (60 \ \mu\text{M})$ upon addition of spermine $(0-40 \ \mu\text{M})$; (c) **BPBP** $(30 \ \mu\text{M}) + \text{CB}[7] (60 \ \mu\text{M})$ upon addition of spermidine $(0-70 \ \mu\text{M})$ in water; (d) Response of the twocomponent supramolecular assembly against biogenic amines.

Figure S11. (a) Fluorescence response of GQDs (5 μ L, 1 mg/mL) + **BPBP** (30 μ M) + CB[7] (60 μ M) upon addition of spermidine (0-80 μ M); (b) Fluorescence response of sensing assembly containing 30 μ M **BPBP** at the lower concentration range for spermidine (0–500 nM) (LOQ = 12.5 nM, LOD = 0.9 ppb) (GQDs λ_{ex} 370 nm, λ_{em} 545 nm; **BPBP** λ_{em} 730 nm).

Figure S12. UV-vis spectra of GQDs upon addition of (a) **BPBP** (0-30 μ M); (b) **BPBP** (30 μ M) + CB[7] (0-100 μ M); (c) **BPBP** (30 μ M) + CB[7] (60 μ M) + spermine (0-40 μ M); (d) **BPBP** (30 μ M) + CB[7] (60 μ M) + spermidine (0-80 μ M) in water.

Figure S13. Percentage fluorescence quenching of the supramolecular assembly (at λ_{em} 535 nm) with (a) metal ions; (b) anions; (c) amino acids; (d) neutral molecules [red bars]; and corresponding competitive study in the presence of spermine (30 μ M) [grey bars].

Figure S14. Effect of pH on the relative emission intensities of GQDs:BPBP:CB[7] supramolecular sensing assembly containing 30 μ M BPBP; and sensing assembly upon addition of spermine (30 μ M) [λ_{ex} 370 nm, λ_{em} 535 nm].

Table S3. Life-time decay trace of **BPBP**, **BPBP** + CB[7], and **BPBP** + CB[7] upon addition of spermine.

System	$\tau_1/ns~(\%)$	$\tau_2/ns~(\%)$	τ_{3}/ns (%)	χ^2	τ_{av}/ns
BPBP in water (λ_{ex} 511 nm, λ_{em} 730	0.06 (82)	0.25 (13)	1.03(5)	1.20	0.133
nm)					
BPBP + CB[7] in water (λ_{ex} 511 nm,	0.14 (38)	0.85 (35)	2.63 (27)	1.24	1.061
$\lambda_{\rm em}$ 730 nm)					
BPBP + CB[7] + SP in water (λ_{ex} 511	0.07 (76)	0.24 (18)	1.01 (6)	1.30	0.157
nm, λ_{em} 730 nm)					

Figure S15. Isothermal calorimetric titration for host-guest complexation of **BPBP** and CB[7]. (A) Raw data for the titration of CB[7] with **BPBP** in the Tris.HCl buffer pH 7.4 at 25 °C, showing the calorimetric response as successive injections of the CB[7] are added to the sample cell. (B) The integrated heat profile of the calorimetric titration is shown in panel A. The solid line represents the best nonlinear least-squares fit in a 1:2 (BPBP:CB[7]) one-site binding model.

Figure S16. Job's plot for the determination of the stoichiometry of GQDs:BPBP:CB[7] threecomponent assembly [**BPBP** (30 μ M), GQDs 5 μ L, 1 mg/mL, CB[7] and SPD concentration varied between 0-30 μ M (λ_{ex} 370 nm; λ_{em} 535 nm).

Figure S17. DFT optimized structures of 1:1 and 2:1 CB[7]:SP complex.

System	τ_1/ns (%)	τ_2/ns (%)	τ ₃ /ns (%)	χ^2	τ_{av}/ns
BPBP in water (λ_{ex} 511 nm, λ_{em} 730	0.06 (82)	0.25 (13)	1.03 (5)	1.20	0.133
nm)					
GQDs (λ_{ex} 374 nm, λ_{em} 535 nm)	0.25 (27)	1.85 (34)	5.15 (39)	1.19	2.71
GQDs-BPBP (λ_{ex} 374 nm, λ_{em} 535	0.22 (18)	0.85 (33)	2.81 (49)	1.06	1.69
nm)					
GQDs-BPBP (λ_{ex} 374 nm, λ_{em} 730	0.05(63)	0.36(20)	3.24 (17)	1.07	0.654
nm)					
GQDs-BPBP-CB[7] (λ_{ex} 374 nm, λ_{em}	0.07 (50)	0.48 (17)	3.76 (33)	1.06	1.36
535 nm)					
GQDs-BPBP-CB[7]-SP (λ_{ex} 374 nm,	0.20 (21)	1.32 (56)	4.46 (23)	1.2	1.81
$\lambda_{\rm em}$ 535 nm)					

Table S4. Life-time decay trace of **BPBP**, GQDs:BPBP conjugate, GQDs:BPBPCB[7]assembly with different concentrations of spermine and spermidine.

Figure S18. Particle size analysis of (a) GQDs; (b) **BPBP**; (c) CB[7]; (d) GQDs:BPBP conjugate; (e) GQDs:BPBP:CB[7] assembly; (f) after addition of spermine in the aqueous solution of the assembly.

Table S5. Zeta potential data for the individual components, binary conjugate, threecomponent sensing assembly, and sensing assembly upon the addition of spermine.

Sample	BPBP	GQDs	CB [7]	Spermine	GQDs +	GQDs +	GQDs +
					BPBP	BPBP +	BPBP +
						CB[7]	CB[7] +
							spermine
Zeta	+5.07	-7.35	-12.03	+ 0.45 mV	-1.54 mV	-15.10 mV	-7.64
potential	mV	mV	mV				mV
(ζ)							

Figure S19. Time-dependent vapor phase sensing of spermine and spermidine at variable concentrations: The fluorescence responses from the two-component sensing assembly towards (a) spermine and (b) spermidine (**BPBP** (30 μ M) + CB[7] (60 μ M), λ_{ex} 519 nm, λ_{em} 730 nm); The fluorescence responses from three-component sensing assembly towards (c) spermine and (d) spermidine (GQDs (5 μ L, 1 mg/mL) + **BPBP** (30 μ M) + CB[7] (60 μ M, λ_{ex} 370 nm, λ_{em} 535 nm); Insets: Corresponding visual color change images for the two-component and three-component sensors towards SP/SPD vapors after addition of 1 equiv of SP and 2 equiv of SPD, respectively.

 Table S6. Vapor phase SP/SPD recovery data for the two-component and three-component

 supramolecular sensor^a

Sr. No.	Sample	Spermine/ Spermidine added (µM)	Spermine/ Spermidine found (µM)	Recovery (%)	RSD (%) (n = 3)
1.	Two-component assembly (BPBP	06.0	05.011	83.5	2.7
	+ CB[7]) + SP	12.0	10.272	85.6	2.9
		18.0	15.102	83.9	3.4
		24.0	21.058	87.4	3.2
		30.0	25.530	85.1	3.0
2.	Two-component assembly (BPBP	12.0	09.624	80.2	3.6
	+ CB[7]) $+$ SPD	24.0	19.560	81.5	2.9
		36.0	29.016	80.6	3.5
		48.0	40.080	83.5	2.4
		60.0	49.560	82.6	3.1
3.	Three-component assembly	06.0	05.412	90.2	2.8
	(GQDs + BPBP + CB[7]) + SP	12.0	10.932	91.1	2.5
		18.0	16.128	89.6	3.3
		24.0	22.176	92.4	3.5
		30.0	27.450	91.5	3.1
4.	Three-component assembly	12.0	10.788	89.9	2.8
	(GQDs + BPBP + CB[7]) + SPD	24.0	20.520	85.5	2.7
		36.0	31.536	87.6	3.6
		48.0	42.672	88.9	2.8
		60.0	53.760	89.6	2.4

^aThe maximum fluorescence intensities from the sensing solutions at 730 nm for twocomponent and at 535 nm for three-component supramolecular sensors, respectively after 48 h were plotted on the standard curves to obtain the % recovery data.

Sr. No.	Probe/dye Type	Strategy (host)	Detection Medium	Detection Limit	Analyte (BPAs)	Interferenc e by other BPAs	Application	Ref. No
1.	Quinoline	host-guest	Glass	Not	SPD	NO	serum	2
		(β-CD)	Surface	Mentioned				
2.	DASPI and	host-guest	Tris-HCl	Not	BPAs	Yes	NA	3
	Hoechst	$\left (\operatorname{CB}[n], n = 6, \right.$	buffer, pH	Mentioned				
	33258	7, 8)	7.3					
3.	PDI	host-guest	Highly	30 nM	SP	SPD	NA	4
		(CB[7])	acidic					
4.	TPE	host-guest	DMSO-H ₂ O	1.0 μΜ	SP	SPD, PUT	NA	5
		(CB[7])						
5.	Phenazopyridine	host-guest	Water	21 nM	SP	NO	Urine	6
		(CB[7])						
		(Colorimetric						
)						

Table S7. A comparative study for dye-cavitand host-guest sensors of spermine/spermidine.

6.	Gold	Pillar	Water	0.034 μM	SP	NO	NA	7
	nanoparticles	[5]arene						
		(Colorimetric						
)						
7.	BPBP	host-guest	Water	20.2 ppb (SP),	SP, SPD	NO	blood serum,	This work
		(CB[7])		36.3 ppb (SPD)			urine	

BPAs: Biogenic polyamines; SP: Spermine; SPD: Spermidine; PDI: Perylene diimide; TPE: Tetraphenylethylene. ^aUnless otherwise mentioned the LOD presented in the table is for spermine.

Sr. No.	Probe/dye Type	Detection Medium	Detection Limit (ppb)	Analyte (BPAs)	Ref. No.
1		W 4	54(2,2 (CD)		0
1.	Functionalized MCM-41	Water	5463.2 (SP)	SP and SPD	8
	loaded with Rhodamine 6G		6545.2		
			(SPD)		
2.	Ciprofloxacin-Tb ³⁺	Water	34.3	SP	9
	complex				
3.	Doxorubicin-ZnO-	Water	Not	SP	10
	cucurbit[7]uril		mentioned		
	nanocomplex,				
4	Quantum dots based	Water	40 5 (SP)	SP and SPD	11
1.		W dtor	205 (CDD)	ST und ST D	11
	nanoprobe		305 (SPD)		
5.	Pyrocatechol violet	HEPES	1262	SP	12
		buffer pH 7			
6.	ТРЕ	Phosphate	141.7 (SP)	SP and SPD	13
		buffer pH 7.4	170.2 (SPD)		
7.	PDI-SDS	HEPES-	6.05	SP	14
		buffered			
		CH ₃ CN/H ₂ O			
		(1:1, v/v, pH			
		7.2);			
8.	Squarine and Pyrene	Water	957	SP	15
	(micelles)				

Table S8. A comparative study for selected supramolecular sensing strategies for SP/SPD.

9.	Benzothiadiazole polymer-	Water	66.8	SP	16
	SDS				
10.	Pyrene amphiphile	(0.8 mM	Not	SP	17
		MOPS, pH	mentioned		
		7.0)			
11.	CdTe QDs and carbon dots.	phosphate	41 (SP)	SP and SPD	18
		buffer (pH	305 (SPD)		
		8.0, 10 mM)			
12.	TPE + CB[6]OH + HAp	Water	1.4	SP, SPD	19
	NPs				
13.	BPBP + GQD +CB[7]	Water	0.1 (SP)	SP, SPD	This work
	affinity-driven guest		0.9 (SPD)		
	exchange				

SP: Spermine; SPD: Spermidine; PDI: Perylenediimide; TPE: Tetraphenylethylene. ^aUnless otherwise mentioned the LOD presented in the table is for spermine

References:

- L. Wang, Y. Wang, T. Xu, H. Liao, C. Yao, Y. Liu, Z. Li, Z. Chen, D. Pan, L. Sun and M. Wu, Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties, *Nat Commun.* 2014, 5, 5357, https://doi.org/10.1038/ncomms6357.
- Y. Cheng, P. Jiang and X. Dong, Molecularly imprinted fluorescent chemosensor synthesized using quinoline-modified-β-cyclodextrin as monomer for spermidine recognition, *RSC Adv.* 2015, 5, 55066–55074, https://doi.org/10.1039/C5RA07761C.
- K. M. Park, J. Kim, Y. H. Ko, Y. Ahn, J. Murray, M. Li, A. Shrinidhi and K. Kim, Dyecucurbit[n]uril complexes as sensor elements for reliable pattern recognition of biogenic polyamines, *Bull. Chem. Soc. Jpn.* 2018, **91**, 95–99, https://doi.org/10.1246/bcsj.20170302.
- K. Liu, Y. Yao, Y. Kang, Y. Liu, Y. Han, Y. Wang, Z. Li and X. Zhang, A supramolecular approach to fabricate highly emissive smart materials, *Sci. Rep.* 2013, 3, 2372–2379, https://doi.org/10.1038/srep02372.
- G. Jiang, W. Zhu, Q. Chen, X. Li, G. Zhang, Y. Li, X. Fan and J. Wang, Selective fluorescent probes for spermine and 1-adamantanamine based on the supramolecular structure formed between AIE-active molecule and cucurbit[n]urils, *Sens. Actuators, B* 2018, 261, 602–607, https://doi.org/10.1016/j.snb.2018.01.197.
- H. Zhang, M. Liu, X. Zhu and H. Li, Detection of spermine using cucurbit[7]urilphenazopyridine host-guest inclusion complex as a platform, *Chem. Lett.* 2021, 50, 154– 157, https://doi.org/10.1246/cl.200667.
- X. Tan, X. Liu, W. Zeng, Z. Zhang, T. Huang, L. Yu and G. Zhao, Colorimetric sensing towards spermine based on supramolecular pillar[5]arene reduced and stabilized gold nanoparticles, *Spectrochim. Acta, Part A* 2019, **221**, 117176, https://doi.org/10.1016/j.saa.2019.117176.

- M. Barros, A. López-Carrasco, P. Amorós, S. Gil, P. Gaviña, M. Parra, J. E. Haskouri, M. C. Terencio and A. M. Costero, Chromogenic chemodosimeter based on capped silica particles to detect spermine and spermidine, *Nanomaterials* 2021, 11, 818, https://doi.org/10.3390/nano11030818.
- N. N. Nghia, B. T. Huy, P. T. Phong, J. S. Han, D. H. Kwon and Y. -I. Lee, Simple fluorescence optosensing probe for spermine based on ciprofloxacin-Tb³⁺ complexation, *PLoS ONE* 2021, 16, e0251306, https://doi.org/10.1371/ journal.pone.0251306.
- Y. Chen, L. Jing, Q. Meng, B. Li, R. Chen and Z. Sun, Supramolecular chemotherapy: Noncovalent bond synergy of cucurbit[7]uril against human colorectal tumor cells, *Langmuir* 2021, 37, 9547–9552, <u>https://doi.org/10.1021/acs.langmuir.1c01422</u>.
- 11. S. Abbasi-Moayed, A. Bigdeli and M. R. Hormozi-Nezhad, Determination of spermine and spermidine in meat with ratiometric fluorescence nanoprobe and a combinational logic gate, *Food Chem.* 2022, 384, 132459, http://doi.org/10.1016/j.foodchem.2022.132459.
- Y. Fukushima, and S. Aikawa, Colorimetric chemosensor for spermine based on pyrocatechol violet and anionic phenylboronic acid in aqueous solution, *Microchem. J.* 2021, 162, 105867, http://doi.org/10.1016/j.microc.2020.105867.
- M. Barros, S. Ceballos, P. Arroyo, J. A. Sáez, M. Parra, S. Gil, A. M. Costero and P. Gaviña, Spermine and spermidine detection through restricted intramolecular rotations in a tetraphenylethylene derivative, *Chemosensors* 2022, 10, 8, https://doi.org/10.3390/chemosensors10010008.
- P. Singh, L. S. Mittal, G. Bhargava and S. Kumar, Ionic self-assembled platform of perylenediimide–sodium dodecylsulfate for detection of spermine in clinical samples, *Chem. Asian J.* 2017, **12**, 890–899, <u>https://doi.org/10.1002/asia.201700120</u>.

- 15. J. Tu, S. Sun and Y. Xu, A novel self-assembled platform for the ratiometric fluorescence detection of spermine, *Chem. Commun.* 2016, **52**, 1040–1043, <u>https://doi.org/10.1039/c5cc07861j.</u>
- 16. A. H. Malik, S. Hussain and P. K. Iyer, Aggregation-induced FRET via polymer-surfactant complexation: A new strategy for the detection of spermine, *Anal. Chem.* 2016, 88, 7358–7364, https://doi.org/10.1021/acs.analchem.6b01788.
- 17. Z. Köstereli and K. Severin, Fluorescence sensing of spermine with a frustrated amphiphile, *Chem. Commun.* 2012, **48**, 5841–584310, <u>https://doi.org/1039/c2cc32228e</u>.
- 18. V. G. Naik, V. Kumar, A. C. Bhasikuttan, K. Kadu, S. R. Ramanan, A. A. Bhosle, M. Banerjee and A. Chatterjee, Solid-supported amplification of aggregation emission: A tetraphenylethylene–cucurbit[6]uril@hydroxyapatite-based supramolecular sensing assembly for the detection of spermine and spermidine in human urine and blood, ACS Appl. Bio Mater. 2021, 4, 1813–1822, https://doi.org/10.1021/acsabm.0c01527.

NMR Spectra:

¹H NMR spectrum of **5-bromo-2-hydroxyisophthalaldehyde**.

¹³C NMR spectrum of **5-bromo-2-hydroxyisophthalaldehyde**.

¹³C NMR spectrum of **BPBP**.