SUPPORTING INFORMATION

Beyond the fluorescence labelling of novel nitrogen-doped silicon quantum dot: reducing agent and stabilizer for preparing hybrid nanoparticles and antibacterial applications

Yi-Fan Wang, Meng-Meng Pan, Yong-Li Song, Zhi Li, Le Wang, Ming Jiang, Xu Yu*, Li Xu*

Address: Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, PR China.

*Corresponding authors: E-mail: xuyu@hust.edu.cn; xulpharm@mails.tjmu.edu.cn.

Summary

The supporting information file includes 8 Pages, 6 Figures and 1 table.

List of Figures

Fig. S1 The Si 2p (A), C 1s (B) and O 1s (C) XPS spectrum, and FT-IR spectrum (D) of N-SiQDs. Fig. S2 The photobleaching resistance of calcein (A) and N-SiQDs (B) labeled bacteria. (C) The

fluorescence quantitative results under different conditions. ***p < 0.005.

Fig. S3 (A) The UV spectrum and photograph (insert) of N-SiQDs mixed with AgNO₃. (B) Photographs of TEPA-CDs (a), APTMS-SiQDs (b), N-SiQDs (c) and TEPA-CDs/APTMS-SiQDs (v/v=1:1) (d) mixed with HAuCl₄, respectively.

Fig. S4 Photographs of bacterial colonies of *S. aureus* (A-D) and *E. coli* (E-H) cells with different treatments, respectively. (A and E: normal saline, B and F: TEPA-CDs, C and G: APTMS-SiQDs, D and H: N-SiQDs, the material dosage was 0.64 mg/mL and 0.07 mg/mL for *S. aureus* and *E. coli*, respectively).

Fig. S5 Photographs of bacterial colonies of S. aureus (A-C) and E. coli (D-F) cells with different treatments, respectively. (a and d: normal saline + 10 mM H_2O_2 , b and e: 2 mg/mL N-SiQDs-AuNPs + 10 mM H_2O_2 , c and f: 2 mg/mL citric-AuNPs + 10 mM H_2O_2)

Fig. S6 Fluorescence images of live (green)/dead (red) of S. aureus and E. coli corresponding to the Fig.5 G and H.Table S1 The comparison of N-SiQDs-AuNPs and reported gold nanoparticles for the catalytic degradation of 4-NP.

Fig. S7 Scavenging activity of N-SiQDs to DPPH radicals.

Figures :

Fig. S1 The Si 2p (A), C 1s (B) and O 1s (C) XPS spectrum, and FT-IR spectrum (D) of N-SiQDs.

Fig. S2 The photobleaching resistance of calcein (A) and N-SiQDs (B) labeled bacteria. (C) The fluorescence quantitative results under different conditions. ***p < 0.005.

Fig. S3 (A) The UV spectrum and photograph (insert) of N-SiQDs mixed with AgNO₃. (B) Photographs of TEPA-CDs (a), APTMS-SiQDs (b), N-SiQDs (c) and TEPA-CDs/APTMS-SiQDs (v/v=1:1) (d) mixed with HAuCl₄, respectively.

Fig. S4 Photographs of bacterial colonies of *S. aureus* (A-D) and *E. coli* (E-H) cells with different treatments, respectively. (A and E: normal saline, B and F: TEPA-CDs, C and G: APTMS-SiQDs, D and H: N-SiQDs, the material dosage was 0.64 mg/mL and 0.07 mg/mL for *S. aureus* and *E. coli*, respectively)

Fig. S5 Photographs of bacterial colonies of *S. aureus* (A-C) and *E. coli* (D-F) cells with different treatments, respectively. (a and d: normal saline + 10 mM H_2O_2 , b and e: 2 mg/mL N-SiQDs-AuNPs + 10 mM H_2O_2 , c and f: 2 mg/mL citric-AuNPs + 10 mM H_2O_2)

Fig. S6 Fluorescence images of live (green)/dead (red) of *S. aureus* and *E. coli* corresponding to the Fig.5 G and H.

Fig. S7 Scavenging activity of N-SiQDs to DPPH radicals.

Catalyst	Composition	Catalytic rate	Reference
		constant (k)	
		(10^{-3} s^{-1})	
PVP ₁₂ -AuNPs	PVP (12 mM) coated gold nanoparticles	6.8	1
PVP ₂₅ -AuNPs	PVP (25 mM) coated gold nanoparticles	3.9	
PVP50-AuNPs	PVP (50 mM) coated gold nanoparticles	3.9	
AuNP-CC	Gold nanoparticles prepared with Citrus	0.139	2
	limon juice as reductant		
GNT-AAO	Gold nanotube/porous anodic aluminium	0.132	3
	oxide composite membrane		
SiNWs-AuNPs	Gold nanoparticles coated silicon nanowires	0.204	4
Cirtic-AuNPs	Sodium citrate stabilized gold nanoparticles	1.690	This
			work
N-SiQDs-AuNPs	Nanocomposites with N-SiQDs and gold	19.31	This
	nanoparticles		work

Table S1 The comparison of N-SiQDs-AuNPs and reported gold nanoparticles for the catalytic degradation of 4-NP.

References

1 M.S.A. Cerimedo, L.G. Baronio, C.E. Hoppe, M.A. Ayude, *ChemistrySelect*, 2019, 4, 608-616.

Y. Anwar, I. Ullah, M. Ul-Islam, K.M. Alghamdi, A. Khalil, T. Kamal, *Arab. J. Chem.*, 2021, 14, 103327.

3 Y. Yu, K. Kant, J.G. Shapter, J. Addai-Mensah, D. Losic, *Microporous Mesoporous Mater.*, 2012, **153**, 131-136.

4 S. Amdouni, Y. Cherifi, Y. Coffinier, A. Addad, M.A. Zaibie, M. Oueslati, R. Boukherroub, *Mater. Sci. Semicond. Process.*, 2017, **75**, 206-213.