Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Supporting information

A near-infrared probe for real-time detection of lysosome pH value in living cells under "wash free" conditions

Ziqiang Wang ^a, Tingting Pan ^b, Yanqing Tian ^{c, *}, Jianxiang Liao ^{b, *}

^a School of Medicine, Southern University of Science and Technology, No 1088

Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong, 518055, China

^b Department of Pediatric Neurology, Shenzhen Children's Hospital, 7019 Yitian

Road, Shenzhen, 518038, China

^e Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen,

Guangdong, 518055, China

* Corresponding authors.

E-mail address: liaojianxiang@vip.sina.com (J. Liao), tianyq@sustech.edu.cn (Y. Tian).

Table of Contents

- 1. Synthesis and characterization
- 2. Spectral characteristics of W1 molecules
- 3. Spectral characteristics of W2 and W3 molecules
- 4. Cytotoxicity evaluation of W1 molecules
- 5. Images of W1 with different concentrations
- 6. Co-location analysis of W3 molecules
- 7. Dielectric constants of common solvents

1. Synthesis and characterization

Scheme S1. Synthetic routes of W1, W2 and W3.

The synthesis of W1, W2 and W3 was given in detail in Scheme S1.

Synthesis of 1a. 4-Fluoro-3-hydroxybenzaldehyde (280 mg, 2 mmol) and diethylamine (3 mL, 2.2 mmol) were mixed in a flask with 10 mL of DMSO. K₂CO₃ (430 mg, 3.1 mmol) and 3 mL of ddH₂O were added. The mixture was refluxed at 180°C for 15 h. A crude product is obtained by evaporating the solvent. Product 1a was further purified by silica gel chromatography (hexane/ethyl acetate). Yield is 25.4%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 9.74 (s, H), 7.51 (d, *J* = 6.9 Hz, H), 7.15 (d, *J* = 14.8 Hz, H), 6.81 (d, *J* = 3.6 Hz, H), 3.42 (d, *J* = 4.1 Hz, 4H), 1.13 (t, *J* = 7.2 Hz, 6H).

Synthesis of 2a. 1-Bromo-2-(2-methoxyethoxy)ethane (800 mg, 4.4 mmol) was dissolved in acetone (8 mL), and then K_2CO_3 (860 mg, 6.2 mmol), KI (catalyst, 10 mg,) and acetylacetone (473 µL, 4.4 mmol) were added to the mixture. The mixture was stirred at 65°C for 20 h. After the reaction, it was poured in water, and then extracted

with ethyl acetate (3×15 mL). The organic layer was washed with saturated NaCl, and dried over Na₂SO₄. Compound **2a** was obtained after flash column chromatography (hexane/ethyl acetate) with a yield of 40.5%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 3.78 (t, *J* =4.9 Hz, 2H), 3.63 (t, *J* =7.9 Hz, 1H), 3.57-3.52 (m, 2H), 3.44-3.39 (m, 2H), 3.31 (s, 3H), 2.13 (s, 6H), 2.07-1.99 (m, 2H).

Synthesis of 3a. Compound **1a** (400 mg, 2 mmol) was dissolved in acetonitrile (3.0 mL), followed by the additions of acetic acid (6.7 µL, 0.1mmol), tetrahydroisoquinoline (9.3 µL, 0.1 mmol), and **2a** (205 mg, 1 mmol). The resulted solution was stirred at r.t. for 4 h. **3a** was obtained after removing the solvent and subjected to flash column chromatography with methylene chloride. Yield: 42.8%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.63 (d, *J* = 15.7 Hz, 2H), 7.53 (d, *J* = 7.2 Hz, 2H), 7.16 (d, *J* = 15.3 Hz, 2H), 6.72 (d, *J* = 3.8 Hz, 2H), 6.58 (d, *J* = 3.6 Hz, 2H), 6.01 (s, 1H), 3.71 (t, *J* = 10.1, 5.6 Hz, 2H), 3.52-3.49 (m, 2H), 3.42-3.39 (m, 2H), 3.36-3.32 (m, 8H), 3.29 (s, 3H), 2.63 (t, *J* = 6.5 Hz, 2H), 1.13(t, *J* = 7.1 Hz, 12H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) = 150.79 (2C), 146.18 (2C), 140.43 (2C), 131.41 (2C), 130.99 (2C), 121.96 (2C), 121.08, 120.16, 119.69, 116.45 (2C), 111.98, 111.57, 71.71, 69.91, 68.34, 59.01, 46.06 (4C), 26.96, 12.41 (4C). HRMS: Calcd. [M-H]⁺: 551.3199; found value [M-H]⁺: 551.3181.

Synthesis of W1. BF₃·Et₂O (3 mL) was slowly added to **3a** (1.1 g, 2 mmol) in tributyl borate (768 μ L, 6.10 mmol) under the protection of nitrogen. The reaction mixture was then stirred at r.t. for 4 h, and the W1 was obtained after removing the solvent and purified by silica gel chromatography (hexane/ethyl acetate). Yield is 95.4%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.83 (d, *J* = 15.7 Hz, 2H), 7.52 (d, *J* = 7.8 Hz, 2H), 7.22 (d, *J* = 15.8 Hz, 2H), 6.89 (d, *J* = 3.7 Hz, 2H), 6.75 (d, *J* = 3.8 Hz, 2H), 3.63 (t, *J* = 3.2 Hz, 2H), 3.53-3.51 (m, 2H), 3.43-3.40 (m, 2H), 3.38-3.34 (m, 8H), 3.31 (s, 3H), 2.64 (t, *J* = 6.8 Hz, 2H), 1.14(t, *J* = 7.3 Hz, 12H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) = 151.19 (2C), 147.65 (2C), 140.16 (2C), 132.59 (2C), 130.25 (2C), 122.84 (2C), 120.88, 120.26, 119.76, 116.40 (2C), 112.34, 111.77, 71.81, 69.94, 68.74, 59.13, 46.17

4

(4C), 26.89, 12.35 (4C). HRMS: Calcd. [M-H]⁺: 599.3492; found value [M-H]⁺: 599.3529.

Synthesis of 3b. 4-(Diethylamino)benzaldehyde (0.71 g, 2 mmol) was dissolved in acetonitrile (3.0 mL), followed by the additions of acetic acid (6.7 µL, 0.1mmol), tetrahydroisoquinoline (9.3 µL, 0.1 mmol), and **2a** (205 mg, 1 mmol). The resulting solution was stirred at r.t. for 4 h. **3b** was obtained after removing the solvent and subjecting to flash column chromatography with methylene chloride. Yield: 81.4%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.88 (d, *J* = 15.6 Hz, 2H), 7.59 (d, *J* = 4.9 Hz, 4H), 7.23 (d, *J* = 4.2 Hz, 2H), 6.81 (d, *J* = 11.7 Hz, 4H), 5.98 (s, 1H), 3.74 (t, *J* = 3.6 Hz, 2H), 3.54-3.51 (m, 2H), 3.44-3.40 (m, 2H), 3.37-3.34 (m, 8H), 3.31 (s, 3H), 2.65 (t, *J* = 6.2 Hz, 2H), 1.12(t, *J* = 6.9 Hz, 12H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) = 145.95 (2C), 142.03 (2C), 134.33 (2C), 130.99 (4C), 126.08 (2C), 120.97, 120.19 (2C), 111.02 (4C), 72.17, 69.43, 68.83, 58.92, 46.18 (4C), 26.71, 12.60 (4C). HRMS: Calcd. [M+H]⁺: 521.3301; found value [M+H]⁺: 521.3324.

Synthesis of W2. BF₃·Et₂O (3 mL) was slowly added to **3b** (1.04 g, 2 mmol) in tributyl borate (768 µL, 6.10 mmol) under the protection of nitrogen. The reaction mixture was then stirred at r.t. for 4 h, and the W2 was obtained after removing the solvent with a yield of 88.7%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.15 (d, *J* = 16.2 Hz, 2H), 7.63 (d, *J* = 4.3 Hz, 4H), 7.45 (d, *J* = 4.8 Hz, 2H), 6.77 (d, *J* = 11.7 Hz, 4H), 3.72 (t, *J* = 3.6 Hz, 2H), 3.59 (t, *J* = 3.5 Hz, 2H), 3.48 (t, *J* = 4.6 Hz, 2H), 3.42 – 3.39 (m, 8H), 3.35 (s, 3H), 2.74 (t, *J* = 6.2 Hz, 2H), 1.14(t, *J* = 6.9 Hz, 12H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) = 145.75 (2C), 141.17 (2C), 133.12 (2C), 132.59 (4C), 126.37 (2C), 121.51, 120.12 (2C), 110.22 (4C), 72.19, 69.50, 68.34, 59.22, 46.26 (4C), 26.75, 12.42 (4C). HRMS: Calcd. [M+H]⁺: 569.3284; found value [M+H]⁺: 569.3299.

Synthesis of 3c. 1a (1.6 g, 8 mmol) was dissolved in acetonitrile (3.0 mL), followed by the additions of acetic acid (6.7 μ L, 0.1mmol), tetrahydroisoquinoline (9.3 μ L, 0.1 mmol), and acetylacetone (460 μ L, 4.0 mmol), the resulting solution was stirred at r.t.

for 8 h. **3c** was obtained after removing the solvent and subjecting to flash column chromatography with methylene chloride. Yield: 75.1%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.78 (d, *J* = 16.2 Hz, 2H), 7.65 (d, *J* = 7.8 Hz, 2H), 7.27 (d, *J* = 12.1 Hz, 2H), 6.88 (d, *J* = 7.1 Hz, 2H), 6.78 (d, *J* = 15.5 Hz, 2H), 6.16 (m, 2H), 3.83-3.77 (m, 8H), 1.13(t, *J* = 7.1 Hz, 12H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) = 182.23 (2C), 152.76 (2C), 139.77 (2C), 135.07 (2C), 130.41 (2C), 124.15, 120.12 (2C), 116.49 (2C), 113.27 (2C), 104.36, 46.12 (4C), 12.37 (4C). HRMS: Calcd. [M-H]⁺: 451.2519; found value [M-H]⁺: 451.2534.

Synthesis of W3. BF₃·Et₂O (3 mL) was slowly added to 4a (0.89 g, 2 mmol) in tributyl borate (768 μ L, 6.10 mmol) under the protection of nitrogen. The reaction mixture was then stirred at r.t. for 4 h. W3 was obtained after removing the solvent. Yield: 87.6%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.95 (d, *J* = 16.4 Hz, 2H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.38 (d, *J* = 13.4 Hz, 2H), 6.92 (d, *J* = 7.2 Hz, 2H), 6.81 (d, *J* = 15.9 Hz, 2H), 6.34 (s, 1H), 3.90-3.84 (m, 8H), 1.15(t, *J* = 7.2 Hz, 12H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ (ppm) = 181.19 (2C), 151.56 (2C), 140.25 (2C), 135.96 (2C), 129.37 (2C), 123.48, 119.91 (2C), 116.86 (2C), 112.92 (2C), 103.73, 46.28 (4C), 12.31 (4C). HRMS: Calcd. [M-H]⁺: 497.2531; found value [M-H]⁺: 497.2559.

Fig. S6. HRMS of W2.

Fig. S9. HRMS of W3.

2. Spectral characteristics of W1 molecules

Fig. S10. (A) Fluorescence spectra of W1 (5 μ M) at different pH (4.0-9.0) in the B-R buffer/EtOH (1/1, v/v) solution ($\lambda_{ex} = 580$ nm). (B) Fluorescence spectra of W1 (5 μ M) at different pH (4.0-9.0) in the B-R buffer/EtOH (1/1, v/v) solution ($\lambda_{ex} = 660$ nm).

3. Spectral characteristics of W2 and W3 molecules

Fig. S11. (A) UV-vis spectra of W2 (5 μ M) at different pH (4.0-9.0) in the B-R buffer/EtOH (1/1, v/v) solution. (B) Fluorescence spectra of W2 (5 μ M) at different pH (4.0-9.0) in the B-R buffer/EtOH (1/1, v/v) solution ($\lambda_{ex} = 450$ nm). Thumbnail is the color change of W2 in different pH solutions. (C) UV-vis spectra of W3 (5 μ M) at different pH (4.0-9.0) in the B-R buffer/EtOH (1/1, v/v) solution. (D) Fluorescence spectra of W3 (5 μ M) at different pH (4.0-9.0) in the B-R buffer/EtOH (1/1, v/v) solution. (D) Fluorescence spectra of W3 (5 μ M) at different pH (4.0-9.0) in the B-R buffer/EtOH (1/1, v/v) solution. (D) Fluorescence spectra of W3 (5 μ M) at different pH (4.0-9.0) in the B-R buffer/EtOH (1/1, v/v) solution. (D) Fluorescence spectra of W3 (5 μ M) at different pH (4.0-9.0) in the B-R buffer/EtOH (1/1, v/v) solution. (D) Fluorescence spectra of W3 (5 μ M) at different pH (4.0-9.0) in the B-R buffer/EtOH (1/1, v/v) solution. (D) Fluorescence spectra of W3 (5 μ M) at different pH (4.0-9.0) in the B-R buffer/EtOH (1/1, v/v) solution. (D) Fluorescence spectra of W3 (5 μ M) at different pH (4.0-9.0) in the B-R buffer/EtOH (1/1, v/v) solution.

4. Cytotoxicity evaluation of W1

Fig. S12. W1 was incubated with HeLa cells for 6 hours, 12 hours and 24 hours respectively, and the cytotoxicity was evaluated by MTT assay.

5. Images of W1 with different concentrations

Fig. S13. Images of HeLa cells at different concentrations (0.1, 1, 5 μ M) of W1. $\lambda_{ex} = 594$ nm, emission was collected 660 to 720 nm.

6. Co-location analysis of W3

Fig. S14. Intracellular localization of W3 was performed in HeLa cells. Cells were incubated with W3 ($\lambda_{ex} = 594$ nm, collected 660-720 nm) and Lyso Tracker Green ($\lambda_{ex} = 488$ nm, collected 490-530 nm) for 40 min, respectively. The fourth column represents the intensity correlation plot of dyes and probes. The fifth column represents cross-sectional analysis along the white line in the insets. Scale bars: 20 µm.

7.	Dielectric	constants	of common	solvents
· •		constants	or common	SOLVEILE

Solvents	EtOH	MeOH	CH ₃ CN	DMSO	H ₂ O
Dielectric constants	24.3	33.6	37.5	47.2	80.4

Table S1. Dielectric constants of common solvents.¹

References:

1. W. M. Latimer, *Chemical Reviews*, 1949, 44, 59-67.