Supporting Information

A Novel Full Solar Light Spectrum Responsive Antimicrobial Agent by WS₂ Quantum Dots for Photocatalytic Wound Healing

Therapy

Huan Wang ^{1, 2#}, Fanghan Li^{3#}, Yuan Yong^{1, 2*}, Mingzhu Lv ^{1, 2}, Chenghui Liu^{1, 2}, Qiqi Xu^{1, 2}, Guobo Du⁵, Jiani Xie⁶, Yong You^{1, 2}, Jiangwei Xiao^{3*}, Guohui Jiang^{4*}

 Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.

3. The Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Faculty of medicine, Chengdu, 610500, China.

4. Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of neurological diseases, North Sichuan Medical College, Nanchong, 637000, China.

5. Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.

College of Pharmacy and Biological Engineering, Chengdu University, Chengdu,
610106, China.

These authors contributed equally.

Corresponding Authors:

*E-mail: <u>yongy1816@163.com</u>; <u>xiaojiangwei@126.com</u>; <u>neurodoctor@163.com</u>

EXPERIMENTAL SECTION

Materials and chemicals

Commercial WS₂ (99.8 %) was obtained from Alfa Aesar and used without further purification. H₂SO₄ (95.0 %-98.0 %, analytical reagent), methyl orange (MO), Tris(hydroxymethyl)methyl aminomethane THAM (Tris) and Potassium bromide (KBr) were obtained from Chron Chemical Co. Ltd. (Chengdu, China). Rhodamine B (RhB), 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 3,3',5,5'-tetramethylbenzidine (TMB), o-phenylenediamine (OPD), 3, 3'diaminobenzidine (DAB) and 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) were obtained from Aladdin Company (China, Shanghai). hydrogen peroxide (H₂O₂, 30 %) was procured from Jinshan Chemical Reagent Co. Ltd. (Chengdu, China). Reduced glutathione (GSH) was sourced from Nanjing Jiancheng Institute of Biological Engineering. Crystal violet staining solution was purchased from Scientific Phygene (Shanghai, China). Acridine orange and Ethidium bromide (AO-EB) staining kit was acquired from Shanghai Yuanye Bio-Technology Co. Ltd. (China). Sprague Dawley rats. Deionized (DI) water was used in the whole process.

Fig. S1 TEM of WS₂ QDs. (Scale bar = 50 nm)

Fig. S2 FT-IR spectra of the WS_2 QDs.

Fig. S3 Raman spectra of the WS_2 QDs.

Fig. S4 FT-IR spectra of WS₂ QDs.

Fig. S5 UV-vis absorption spectra of MO ($10 \ \mu g \cdot mL^{-1}$) with WS₂ QDs (500 $\ \mu g \cdot mL^{-1}$) under UV, Nis and NIR light irradiation at different time (0-180 min).

Fig. S6 UV-vis absorption spectra of RhB (10 μ g·mL⁻¹) with WS₂ QDs (500 μ g·mL⁻¹) under UV, Nis and NIR light irradiation at different time (0-180 min).

Fig. S7 Peroxidase-like activity of reduced WS_2 QDs is dependent on concentrations (a), H_2O_2 (b), temperature (c), and pH (d). WS_2 QDs show an optimal pH of 4.0-5.0 and optimal temperature around 25-30°C. The insets show the fluorescence spectra of the corresponding reduced WS_2 QDs reaction system.

Fig. S8 Photographs of color changes after GSH treatment at different full spectrum light intervals were determined by Ellman's assay in the absence and presence of WS₂ QDs. The concentration of WS₂ QDs was 50 μ g·mL⁻¹. GSH without WS₂ QDs as a control showed a significant reduction in color after 60 minutes of light.

Fig. S9 Photographs for the color change after GSH oxidation with different concentrations of WS_2 QDs at different time intervals determined by Ellman's assay.

Fig. S10 Fluorescent staining photograph of *E. coli* treated after exposed (I) Control, (II) UV, (III) Vis, (IV) NIR, (V) Full spectrum, (VI) WS₂ QDs $(50 \ \mu g \cdot mL^{-1})$, (VII) WS₂ QDs + UV, (VIII) WS₂ QDs + Vis, (IX) WS₂ QDs + NIR, (X) WS₂ QDs + Full spectrum.

Fig. S11 Fluorescent staining photograph of *S. aureus* treated after exposed (I) Control, (II) UV, (III) Vis, (IV) NIR, (V) Full spectrum, (VI) WS₂ QDs (50 μ g·mL⁻¹), (VII) WS₂ QDs + UV, (VIII) WS₂ QDs + Vis, (IX) WS₂ QDs + NIR, (X) WS₂ QDs + Full spectrum.

Fig. S12 Toxicity experiments with different concentrations of WS_2 QDs for 24 h.