Supporting Information

In-situ assembled titanium carbide-based heterojunctions for synergistic enhancement of NIR-II photothermal/photodynamic therapy against breast cancer

Hai Zhu, Xuequan Zhang, Qiusheng Wang, Jing Li, Jin Deng, Zhuangzhuang Zhang, Xiaoxian Zhang, Jun Cao*, Bin He*

*Corresponding authors:

Prof. Jun Cao, Bin He

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China

Tel: +86-28-85412848; E-mail: caojun@scu.edu.cn (J. C), bhe@scu.edu.cn (B.H)

Fig. S1. XPS spectrum Ti_3C_2/TiO_2 in Ti 2p region.

Fig. S2. The morphology of TiO₂ nanoparticles.

Fig. S3. FITR spectra PVP, Ti_3C_2/TiO_2 and Ti_3C_2/TiO_2 -PVP HJs.

Fig. S4. Mass extinction coefficient of Ti_3C_2/TiO_2 -PVP HJs at 1064 nm.

Fig. S5. Fluorescence spectra of TiO_2 -PVP and Ti_3C_2/TiO_2 -PVP HJs with the same titanium concentration.

Fig. S6. Calculation of the photothermal-conversion efficiency at 1064 nm (NIR-II). Orange and blue line: photothermal effect of an aqueous dispersion of TiO_2/Ti_3C_2 -PVP

under the irradiation with NIR-II laser for certain periods, and then the laser was switched off. Purple line: time constant (τ_s) for the heat transfer from the system determined by applying the linear time data from the cooling period.

Fig. S7. Time-dependent degradation of DPBF caused by ${}^{1}O_{2}$ generated by TiO₂-PVP (A) and Ti₃C₂-PVP (B), respectively, under laser irradiation (660 nm, 1 W/cm², 10 min).

Fig. S8. Cell apoptosis of 4T1 cells after incubated with 0 and 200 ppm concentrations of Ti_3C_2/TiO_2 -PVP HJs with 1064 nm irradiation. Note: 1: Control; 2: Only 660 nm; 3: Only 1064 nm; 4: Ti_3C_2/TiO_2 -PVP+660 nm; 5: Ti_3C_2/TiO_2 -PVP+1064 nm; 6: Ti_3C_2/TiO_2 -PVP+660 nm+1064 nm.

Fig. S9. In vivo Ti bio-distributions after injecting Ti_3C_2/TiO_2 -PVP into female tumorbearing mice for 4 h, 12 h. Data are expressed mean \pm SD (n = 3).

Fig. S10. H&E staining of heart, liver, spleen, lung and kidney from different groups (scale bar = $20 \mu m$). Note: G0: control group (treated only with PBS), G1:1064 nm laser group (only exposed to 1064 nm laser irradiation), G2: 660 nm laser group (only exposed to 660 nm laser irradiation), G3: Ti₃C₂/TiO₂-PVP HJs group (only intravenously injected with Ti₃C₂/TiO₂-PVP HJs), G4: Ti₃C₂/TiO₂-PVP HJs + 660 nm laser group, G5: Ti₃C₂/TiO₂-PVP HJs + 1064 nm laser group, and G6: Ti₃C₂/TiO₂-PVP HJs + 660 and 1064 nm laser group.