Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Supporting information

NOAEL Cancer Therapy: Tumor Targetable Docetaxel-Inorganic Polymer Nanohybrid Prevents Drug-Induced Neutropenia

Geun-Woo Jin,^{a†} Goeun Choi,^{b,c,d,†} Huiyan Piao^b, N. Sanoj Rejinold^b, Shunsuke Asahina^e, Soo-Jin Choi,^f Hwa Jeong Lee,^g and Jin-Ho Choy,^{b,h,i,j*}

^aR&D Center, CnPharm Co., Ltd., Seoul 03759, Republic of Korea

^bIntelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook

University, Republic of Korea

°College of Science and Technology, Dankook University, Cheonan, Republic of Korea

^dDepartment of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook

University, Cheonan, Republic of Korea

eJEOL Ltd. SM Business Unit, 3-1-2 Musashino, Akishima-shi, Tokyo 196-8558, Japan.

^fDivision of Applied Food System, Major of Food Science & Technology, Seoul Women's University, Seoul 01797, Republic of Korea

^gGraduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea

^hDivision of Natural Sciences, the National Academy of Sciences, Seoul, Republic of Korea

Department of Pre-medical Course, College of Medicine, Dankook University, Cheonan, Republic of Korea

International Research Frontier Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama

226-8503, Japan

*Corresponding author. E-mail: jhchoy@dankook.ac.kr

[†] These authors contributed equally to this work.

Supporting information

Fig. S1. Chemical structure of ¹⁴C-labeled DTX

Supporting information

Fig. S3. ³¹P-NMR spectrum of CP.

Fig. S4. ¹H-NMR spectrum of PTX (internal standard: maleic acid).

Supporting information

Fig. S5. (a) Particle size distribution and (b) zeta potential of CP, (c) Particle size distribution, (d) zeta potential, and (e) gentle beam super-high-resolution (GBSH) mode scanning electron microscopy (SEM) images of PTX. (f) Cs-HRTEM image of PTX and spherical primary particle (inset). (g) High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of PTX taken for mapping analysis, and characteristic mapping results of the mixture of elements C, N, O, and P, respectively.

Fig. S6. In vitro stability study of PTX.

Fig. S7. The anti-tumor activity of PTX against pancreatic cancer model (PANC-1 orthotopic mouse model). (n=11)

Fig. S8. Pharmacokinetic profile of PTX and Taxotere[®].

Table S1. Derived PK parameters from the PK profiles of PTX and Taxotere[®].

Drug dose (mg/kg)	AUC _{all} (ng·hr/mL)	C _{max} (ng/mL)	V _d (mL)	CL _t (mL/hr)	t _{1/2} (hr)
Taxotere [®] (15 mg/kg)	4919.4	21465.3	14283.0	3043.1	3.25
PTX (15 mg/kg)	7099.3	1413.9	20978.4	1801.4	8.07