Electrochemical impedance aptasensor based on selenomolybdate nanodots/antimonene hybrid for platelet derived growth factor-BB

Shobhita Singal ${ }^{\ddagger 1}$, Ashish Yadav ${ }^{\neq 1}$, Kajal Sharma ${ }^{2}$, Meenakshi Sharma**2, Raj Kishore Sharma*1
${ }^{1}$ Department of Chemistry, University of Delhi, Delhi-110 007
${ }^{2}$ Dr B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007

*Corresponding author: Raj K. Sharma (drrajksharma@yahoo.co.in)
**Co-corresponding author: M. Sharma meenakshisharma@acbr.du.ac.in
\neq Both authors contributed equally

Supporting Information

Figure S1: (a) Survey spectrum of antimonene; (b) X-ray photoelectron spectrum of Sb in antimonene; (c) O 1s spectrum.

Figure S2: Polyhedral representation of $\left[\left(\mathrm{SeMo}_{6} \mathrm{O}_{21}\right)\left(\mathrm{COO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}\right)_{3}\right]^{6-}$ polyoxometalate

Figure S3: (a) Survey spectrum of POM; X-ray photoelectron spectrum of (b) Mo 3d; (c) Se 3d; (d) C 1s; (e) O 1s in POM.

Figure S4: (a, b) FESEM image of BSA/aptamer-POM(SA)/antimonene on Si wafer at different magnifications; (c, d) corresponding EDAX and elemental mapping of different elements.

Figure S5: Randle's equivalent circuit

Figure S6: Schematic of immunoreaction at the electrode surface

Details of Dissociation constant $\left(K_{D}\right)$ calculation for antigen-aptamer complex

The surface coverage can be calculated by comparing the charge transfer resistance $\left(\mathrm{R}_{\mathrm{et}}\right)$ or capacitance $\left(\mathrm{C}_{\mathrm{dl}}\right)$ to the value of K_{d}. We employed the R_{et} component for K_{d} measurement because minor variations in capacitance values were observed, thus we used a Langmuir adsorption isotherm and a linear relationship between the surface coverage (Θ) and $\mathrm{R}_{\mathrm{et}-1}$ by Eqn. (1) \& (2).
$\Delta \mathrm{R}_{\mathrm{et}-1}=\Theta\left(\Delta \mathrm{R}_{\mathrm{et}-1}\right)_{\max }$
where $\Delta \mathrm{R}_{\mathrm{et}-1}=\left[\left(\mathrm{R}_{\mathrm{et}-1}\right)_{\mathrm{\Theta}=0}-\mathrm{R}_{\mathrm{et}-1}\right] /\left(\mathrm{R}_{\mathrm{et}-1}\right)_{\mathrm{e}=0}$
and $\Delta\left(\mathrm{R}_{\mathrm{et}-1}\right)_{\max }=\left[\left(\mathrm{R}_{\mathrm{et}-1}\right)_{\Theta=0}-\left(\mathrm{R}_{\mathrm{et}-1}\right)_{\max }\right] /\left(\mathrm{R}_{\mathrm{et}-1}\right)_{\Theta=0}$

To avoid data overloading at low protein concentrations, the R_{et} change was converted to the Hanes-Woolf form, which may be characterized by Eqn. (4)
$[\mathrm{X}] / \Delta \mathrm{R}_{\mathrm{et}-1}=[\mathrm{X}] / \Delta\left(\mathrm{R}_{\mathrm{et}-1}\right)_{\max }+\mathrm{K}_{\mathrm{d}} / \Delta\left(\mathrm{R}_{\mathrm{et}-1}\right)_{\max }$

Where in the value of K_{d} was obtained by division of intercept by slope obtained from the Hanes-Woolf plot shown in Fig.9a of manuscript.

