Electrochemical impedance aptasensor based on selenomolybdate

nanodots/antimonene hybrid for platelet derived growth factor-BB

Shobhita Singal^{‡1}, Ashish Yadav^{‡1}, Kajal Sharma², Meenakshi Sharma^{**2}, Raj Kishore Sharma^{*1} ¹Department of Chemistry, University of Delhi, Delhi-110 007 ²Dr B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007

*Corresponding author: Raj K. Sharma (<u>drrajksharma@yahoo.co.in</u>) **Co-corresponding author: M. Sharma <u>meenakshisharma@acbr.du.ac.in</u> # Both authors contributed equally

Supporting Information

Figure S1: (a) Survey spectrum of antimonene; (b) X-ray photoelectron spectrum of Sb in antimonene; (c) O 1s spectrum.

Figure S2: Polyhedral representation of [(SeMo₆O₂₁)(COO(CH₂)₂COO)₃]⁶⁻ polyoxometalate

Figure S3: (a) Survey spectrum of POM; X-ray photoelectron spectrum of (b) Mo 3d; (c) Se 3d; (d) C 1s; (e) O 1s in POM.

Figure S4: (a, b) FESEM image of BSA/aptamer-POM(SA)/antimonene on Si wafer at different magnifications; (c, d) corresponding EDAX and elemental mapping of different elements.

Figure S5: Randle's equivalent circuit

Figure S6: Schematic of immunoreaction at the electrode surface

Details of Dissociation constant (K_D) calculation for antigen-aptamer complex

The surface coverage can be calculated by comparing the charge transfer resistance (R_{et}) or capacitance (C_{dl}) to the value of K_d . We employed the R_{et} component for K_d measurement because minor variations in capacitance values were observed, thus we used a Langmuir adsorption isotherm and a linear relationship between the surface coverage (Θ) and R_{et-1} by Eqn. (1) & (2).

$$\Delta \mathbf{R}_{\text{et-1}} = \Theta \left(\Delta \mathbf{R}_{\text{et-1}} \right)_{\text{max}} \tag{1}$$

where
$$\Delta R_{et-1} = [(R_{et-1})_{\Theta=0} - R_{et-1}] / (R_{et-1})_{\Theta=0}$$
 (2)

and
$$\Delta(\mathbf{R}_{et-1})_{max} = [(\mathbf{R}_{et-1})_{\Theta=0} - (\mathbf{R}_{et-1})_{max}] / (\mathbf{R}_{et-1})_{\Theta=0}$$
 (3)

To avoid data overloading at low protein concentrations, the R_{et} change was converted to the Hanes-Woolf form, which may be characterized by Eqn. (4)

$$[X]/\Delta R_{et-1} = [X] / \Delta (R_{et-1})_{max} + K_d / \Delta (R_{et-1})_{max}$$

$$\tag{4}$$

Where in the value of K_d was obtained by division of intercept by slope obtained from the Hanes-Woolf plot shown in Fig.9a of manuscript.