Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2023

Electronic Supporting Information

Multilamellar ceramide core-structured microvehicles with substantial skin barrier function recovery

Kyounghee Shin^a, Kun Bong Lee^b, Jee-Hyun Hwang^c, Boryeong Lee^a, Hyunsun Ryu^a, Minjoo Noh^d, Jun Bae Lee^d, Yoon Sung Nam^{e,*}, Kyung-Min Lim^{c,*}, and Jin Woong Kim^{a,*}

^a School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea.

^b Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon16419,

Republic of Korea.

^c College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.

^d Innovation Lab., Cosmax R&I Center, Seongnam 13486, Republic of Korea.

^e Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.

*Corresponding Author

Prof. Yoon Sung Nam; Tel: +82 42350 3311; E-mail: yoonsung@kaist.ac.kr Prof. Kyung-Min Lim; Tel: +82 2 3277 3055; E-mail: kmlim@ewha.ac.kr Prof. Jin Woong Kim; Tel: +82 31 290 7346; E-mail: jinwoongkim@skku.edu

Keywords: Ceramide particles, Cellulose nanofiber, Multilamellar structure, Skin barrier function

Supporting experiments

Cell viability test

Cell viability was measured using an EZ-Cytox kit (EZ-3000, Dogen, Korea). Human HaCaT cells were dispersed in 100 μ L of DMEM (4 mM of L-glutamine, 4500 mg mL⁻¹ of glucose, 90% sodium pyruvate, 10% heat inactivated fetal bovine serum, and 1% penicillin–streptomycin) in a 96-well plate. HaCaT cells were then incubated overnight at 37 °C under 5% CO₂ atmosphere in an incubator. After removal of cell media, BCNF _{C18} and Cer dispersions were added to each well with varying their concentration. Then, 100 μ L of EZ-cytox and DMEM mixture were added to the wells. The plates were incubated for an additional 24 h and UV absorbance was measured at 450 nm using a microplate reader (Spark, Tecan, Switzerland).

Supporting data

Fig. S1 Molecular structure of ceramide, fatty alcohols, and BCNF_{C18} employed for the fabrication of CerMPs.

Fig. S2 (a) Synthesis of BCNF_{C18} from a bacterial cellulose bundle. TEM images of bacterial celluloses (b) before and (c) after TEMPO oxidation, and (d) after grafting of C18 alkyl chains. (e) FT-IR spectra and (f) UV spectra of BCNFs before and after grafting of C18 alkyl chains.

Fig. S3 Fluorescence images of CerMPs labelled with (a) rhodamine B for BCNF_{C18} membrane (green) and (b) 9-vinylanthracene for particle core (blue). $\phi_{Cer} = 0.4$, [Ceramide NP+SA] = 20 wt%, and [BCNF_{C18}] = 0.5 wt%.

Fig. S4 Bright-field microscope images and particle size distribution of CerMPs with varying the incorporation amount of C18 alkyl chain against total mass of Ceramide NP and FA: (a) 0.08 mmol g^{-1} , (b) 0.16 mmol g^{-1} , (c) 0.48 mmol g^{-1} , (d) 0.64 mmol g^{-1} g, (e) 0.96 mmol g^{-1} , and (f) 1.28 mmol g^{-1} octadecylamine. $\phi_{Cer} = 0.4$, [Ceramide NP+SA] = 20 wt%, and [BCNF_{C18}] = 0.5 wt%.

Fig. S5 Appearances CerMP dispersions prepared with conventional molecular surfactants: (a) Pluronic F127, (b) Tween 80, and (c) SLS. $\phi_{Cer} = 0.2$, [Ceramide NP+SA]=20 wt%, and [Surfactant] = 5 wt%. Destabilization behavior of CerMPs prepared with Pluronic F127 with the storage time at 4 °C: (d) [Pluronic F127] = 3 wt% and (e) [Pluronic F127] = 5 wt%. $\phi_{Cer} = 0.2$ and [Ceramide NP+SA] = 20 wt%.

Fig. S6 (a) Bright-field microscope images of CerMPs with varying the solid (Ceramide NP + SA) concentration. A gel-like dispersion phase was obtained from around 35 wt%. Average particle size change of CerMPs with varying (b) the core content at $\phi_{Cer} = 0.4$ and (c) the ϕ_{Cer} at [Ceramide NP+SA] = 20 wt%. [BCNF_{C18}] = 0.5 wt%.

Fig. S7 Bright-field microscope (a-d) and polarized microscope images (e-h) of CerMPs prepared with varying ϕ_{Cer} after 6-month storage at 4 °C. [Ceramide NP+BA] = 20 wt% and [BCNF_{C18}] = 0.5 wt%.

Fig. S8 Bright-field microscope images and polarized microscope images of CerMPs upon preparation and after 30-day storage at 4 °C: (a) CerMP_{MA}, (b) CerMP_{SA}, and (c) CerMP_{BA}. Arrows indicate ceramide crystals grown out of CerMP_{MA} in the aqueous phase. $\phi_{Cer} = 0.4$, [Ceramide NP+FA] = 20 wt%, and [BCNF_{C18}] = 0.5 wt%.

Fig. S9 (a) Cell viability after treating HaCaT cells with Ceramide NP dispersions (red) and CerMP dispersions (blue) for 24 h incubation. (b) Tissue viability determined by WST-1 assay after 4 h treatment with Ceramide NP dispersions (red) and CerMP dispersions (blue) at given concentrations. Data were expressed as a normalized percentage of non-treated control cells (NC) after three independent experiments. Error bars represent standard deviation of the mean (n = 6) (p < 0.05, one-way ANOVA).

Fig. S10 (a) Normal porcine tissue. (b) H_2O_2 -induced damaged porcine tissue.