Supporting Information

## Mn derived Cs<sub>4</sub>PbX<sub>6</sub> nanocrystals with stable and tunable wide

## luminescence for white light-emitting diodes

Wenbin Shi,<sup>a</sup> Xiao Zhang,<sup>b\*</sup> Katarzyna Matras-Postolek,<sup>c</sup> Ping Yang <sup>a\*</sup>

<sup>a</sup>School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China. E-mail: mse yangp@ujn.edu.cn

<sup>b</sup>W/A School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth

WA6845, Australia. E-mail: xiao.zhang7@postgrad.curtin.edu.au

<sup>c</sup>Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 St. 31-155 Krakow, Poland



Fig. S1Absorption spectra of Mn:Cs<sub>4</sub>Pb(Cl/Br)<sub>6</sub> NCs.

| C 1                                  | C (0/) | <b>D1</b> (0/) | M (0/) | C1 (0/) | C (0/) |
|--------------------------------------|--------|----------------|--------|---------|--------|
| Sample                               | Cs (%) | Pb (%)         | Mn (%) | CI (%)  | C (%)  |
| Mn:Cs <sub>4</sub> PbCl <sub>6</sub> | 7.09   | 1.72           | 0.66   | 15.3    | 75.2   |

Table S1. Atomic ratio of Mn:Cs<sub>4</sub>PbCl<sub>6</sub> NCs from XPS analysis.

| Table S2 Pb <sup>2+</sup> Lifetime parameters of 1 | Mn:Cs <sub>4</sub> PbCl <sub>6</sub> N | Cs |
|----------------------------------------------------|----------------------------------------|----|
|----------------------------------------------------|----------------------------------------|----|

| Sample    | $\tau_1(ns)$ | B <sub>1</sub> (%) | $\tau_{ave}(ns)$ |
|-----------|--------------|--------------------|------------------|
| Pb:Mn 1:0 | 2.7          | 100                | 2.7              |
| Pb:Mn 3:1 | 2.6          | 100                | 2.6              |
| Pb:Mn 7:3 | 1.5          | 100                | 1.5              |
| Pb:Mn 1:1 | 1.1          | 100                | 1.1              |
| Pb:Mn 3:7 | 0.6          | 100                | 0.6              |
| Pb:Mn 1:3 | 0.5          | 100                | 0.5              |

A single exponential function was applied to fit the decay curves:

 $F(t) = B_1 exp(-t/\tau_1)$ 

in which  $B_1$  is the normalized amplitudes of component.  $\tau_1$ , represent the time constants. The average lifetime ( $\tau_{ave}$ ) was calculated by:

 $\tau_{ave} = B_1 \tau_1^2 / B_1 \tau_1 \qquad (2)$ 

Table S3  $Mn^{2+}$  Lifetime parameters of  $Mn:Cs_4PbCl_6$  and  $Mn:Cs_4Pb(Cl/Br)_6$  NCs.

(1)

| Sample    | $Cs_{4}PbCl_{6}\tau(ns)$ | $Cs_4Pb(Cl/Br)_6 \tau (ns)$ |
|-----------|--------------------------|-----------------------------|
| Pb:Mn 3:1 | 17.1                     | 5.1                         |
| Pb:Mn 7:3 | 16.7                     | 5.3                         |
| Pb:Mn 1:1 | 16.3                     | 6.7                         |
| Pb:Mn 3:7 | 11.1                     | 5.9                         |
| Pb:Mn 1:3 | 8.8                      | 4.4                         |

The PL lifetime decay data from Mn luminescence were measured by Hitachi-U4600 spectrometer.

The calculation formula is as follows:

Equation:  $y = y_0 + A_1 \exp(-(x-x_0)/t_1)$