Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supplementary Materials

Ultrathin Nanosheet Interconnected Ni_xS₆/Ni(OH)₂ Hybrid Nanocages: Successive Selfsacrifice Template Fabrication and Exceptional Performance in Supercapacitors

Yunpeng Xu^{a,#}, Yue Liu^{a,c,#}, Jianyong Ye^{a,b}, Lizhong Wang^b, Sheng Zhuo^a, Weifan Chen^{a,b,c,*}

^a School of Materials Science & Engineering, Nanchang University, Nanchang 330031, PR China

^b Jiangxi Sun-Nano Advanced Materials Technology Co. Ltd., Ganzhou 341000, PR China

^c Rare Earth Research Institute, Nanchang University, Nanchang 330031, PR China

[#]These authors contributed equally

*Corresponding author: Weifan Chen (weifan-chen@163.com)

Fig. S1. XPS spectra of (a) broad scan spectrum, arrow scan of (b) Ni 2p, (c) S 2p and (d) O 1s of $Ni_xS_6/Ni(OH)_2$ hybrid material.

Fig. S2. Selected area electron diffraction (SAED) pattern of Ni_xS₆/Ni(OH)₂ hybrid material.

Fig. S3. Nitrogen adsorption–desorption isotherms with corresponding insert pore size distribution curves of Ni_xS₆/Ni(OH)₂ hybrid material.

Fig. S4. Plot of rate law (log i vs. log v) for the redox couple from 1 to 10 mV s⁻¹ of $Ni_xS_6/Ni(OH)_2$ hybrid material.

Fig. S5. (a) Capacitive contribution to charge storage at 1 mV s⁻¹, (b) the percentages of capacitive capacities at different scan rates of $Ni_xS_6/Ni(OH)_2$ hybrid material.

Fig. S6. SEM images of Ni_xS₆/Ni(OH)₂ hybrid material after GCD cycles.

Fig. S7. EIS of the $Ni(OH)_2$ and $Ni_xS_6/Ni(OH)_2$ hybrid (the insets show the enlarged EIS at the high frequency region and the equivalent circuit corresponding the impedance spectra).

Fig. S8. (a) CV curves at various scan rates, (b) GCD curves at various current densities of active carbon in 6 M KOH aqueous electrolyte.

Fig. S9. Cyclic performance of the $Ni_xS_6/Ni(OH)_2//AC$ asymmetric supercapacitor at a constant current density of 4 A g⁻¹.