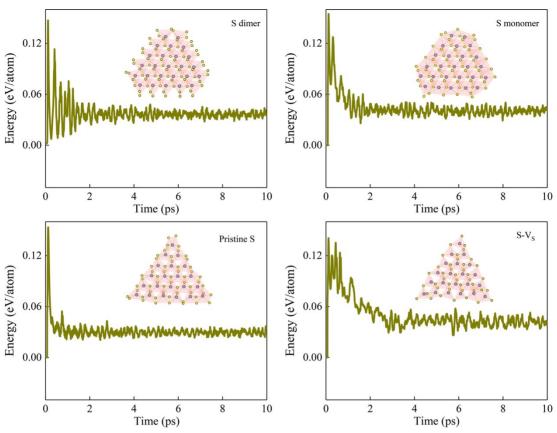
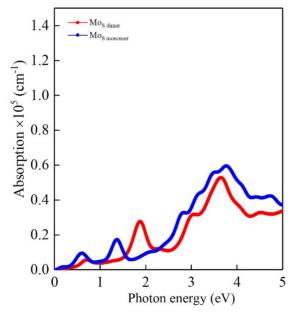
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supplementary Information


Origin of the Enhanced Edge Optical Transition in Transition Metal Dichalcogenide Flakes

Pu Huang,^a Zhuang Ma,^a Gui Wang,^a Wen Xiong,^b Peng Zhang,^a Yiling Sun,^a Zhengfang Qian,^a and Xiuwen Zhang^{*a}

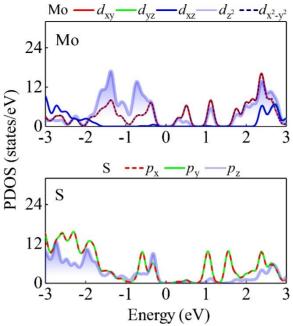

^aKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China

^bChongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

Keywords: edge state, optical transition, transition metal dichalcogenides, density functional theory

Fig. S1 AIMD global optimization (0-10 ps) for the triangular MoS₂ flakes with S dimer/monomer, pristine S or S-V_S edge.

Fig. S2 Absorption spectrum for truncated triangular (hexagonal) MoS₂ flake with S dimer/monomer at Mo edge (Mo_{S dimer}/Mo_{S monomer} in **Figure** 1c).



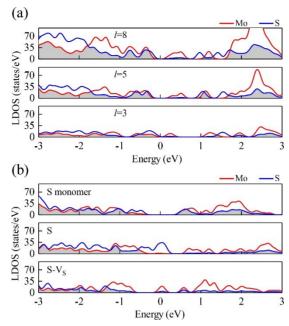

Fig. S3 PDOS for the l=5 triangular MoS₂ flake with S dimer.

Table S1. The TDM intensity for the strong transition $\psi^{281,282,283} \rightarrow \psi^{295,296,297}_{CB}$ in triangular MoS₂ flake with S dimer edge.

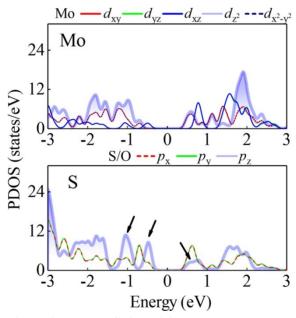

110110 11111 0 0111101 0 0501				
TDM (debye ²)	ψ_{VB}^{281}	ψ_{VB}^{282}	ψ_{VB}^{283}	
$\psi_{\it CB}^{295}$	102.503	59.551	0.001	
$\psi^{296}_{\it CB}$	38.465	27.876	98.194	
$\psi_{\it CB}^{297}$	27.827	38.218	76.227	

Table S2. The TDM intensity for the weak transition $\psi^{286,287,288}_{VB} \rightarrow \psi^{292,293,294}_{CB}$ in triangular MoS₂ flake with S dimer edge.

TDM (debye ²)	ψ_{VB}^{286}	ψ_{VB}^{287}	ψ_{VB}^{288}
$\psi_{\it CB}^{292}$	40.121	32.498	0
$\psi_{\it CB}^{293}$	6.145	7.516	28.943
$\psi_{\it CB}^{294}$	7.523	6.13	29.776

Fig. S4 (a) Overlapped p-d orbital of LDOS for the triangular MoS₂ flake with S dimer as a function of the size l. (b) LDOS for l=5 triangular MoS₂ flake with other edges (S monomer, pristine S and reconstructed S-V_S configurations).

Fig. S5 PDOS for the l=5 triangular MoS₂ flake with S monomer.

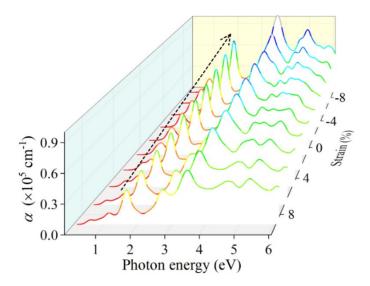


Fig. S6 In-plane strain engineering of the enhanced transition state for l=5 triangular MoS₂ flake.

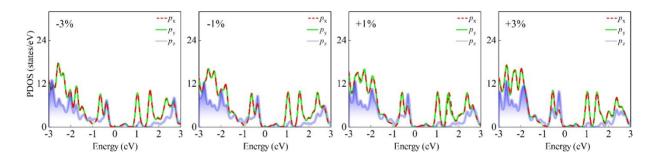
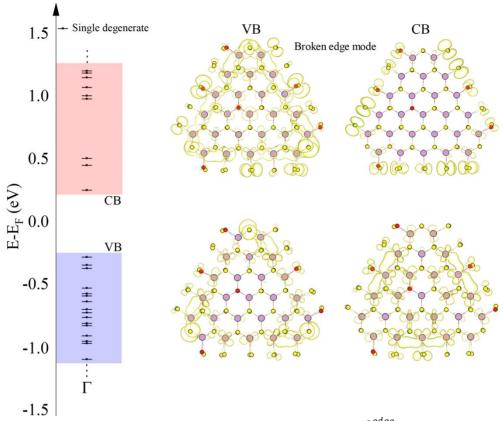



Fig. S7 PDOS for the compressive and tensile in-plane strained triangular MoS_2 flake, indicating the gradually enhanced band-edge p_z component for the tensile strain case.

Fig. S8 Discrete level diagram for l=5 triangular MoS₂ flake with O^{edge}_{S} and the wavefunctions for edge states ($\rho = 2 \times 10^{-3} \text{ eÅ}^{-3}$).