Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Electronic Supporting information

for

More complex than originally thought: revisiting origins of the relaxation

processes in the dimethylammonium zinc formate

Table S1. Crystal data, data collection and refinement results for partially DMAZnD

Crystal data					
Chemical formula	$C_{10}H_{16}D_6N_2O_{12}Zn_2$				
M _r	499.07				
Crystal system, space group	Triclinic, <i>P</i> 1				
Temperature (K)	100				
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.1573 (9), 8.1491 (7), 8.8244 (10)				
α,β,γ (°)	61.343 (10), 62.557 (11), 60.057 (10)				
$V(Å^3)$	426.70 (10)				
Ζ	1				
m (mm ⁻¹)	2.88				
Crystal size (mm)	0.15 imes 0.10 imes 0.08				
Data collection	1				
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	3141, 3141, 2758				
$(\sin q/l)_{\max}$ (Å ⁻¹)	0.707				
Refinement	1				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.052, 0.145, 1.06				
No. of reflections	3141				
No. of parameters	236				
No. of restraints	87				
H-atom treatment	H-atom parameters constrained				
$D\rho_{max}, D\rho_{min} (e \text{ Å}^{-3})$	1.38, -1.36				

Absolute structure	Classical Flack method preferred over		
	Parsons because s.u. lower.		
Absolute structure parameter	0.39 (4)		

Figure S1 The change in the heat capacity and entropy related to the phase transition in DMAZn¹, DMAZn_E and DMAZnD² measured in (a) cooling and (b) heating modes.

Figure S2 The ferroelastic domain structure of DMAZn.

Figure S3 Atom numbering scheme for hydrogen-bonds. DMAZn-formate, T=100K.

Figure S4. Experimental SHG spectra obtained upon a) heating run and b) cooling run.

Zn1—O3	2.081 (11)	O3—C7	1.229 (17)	
Zn1—O4	2.090 (11)	O4—C8	1.289 (13)	
Zn1—09	2.101 (10)	O5—C8 ⁱ	1.238 (17)	
Zn1—08	2.106 (9)	O6—C9 ⁱⁱ	1.243 (14)	
Zn1—O2	2.115 (10)	O7—C10 ⁱⁱⁱ	1.258 (14)	
Zn1—O10	2.139 (10)	O8—C6	1.278 (15)	
Zn2—O6	2.068 (10)	O9—C10	1.256 (16)	
Zn2—O11	2.095 (8)	O10—C5	1.250 (15)	
Zn2—O12	2.098 (10)	011—C5 ^{iv}	1.261 (18)	
Zn2—O1	2.103 (11)	O12—C6 ^v	1.269 (14)	
Zn2—07	2.107 (11)	C1—N1	1.46 (2)	
Zn2—O5	2.136 (10)	C2—N1	1.44 (2)	
O1—C7	1.272 (15)	C3—N2	1.51 (2)	
O2—C9	1.236 (15)	N2—C4	1.49 (2)	
O3—Zn1—O4	94.6 (4)	O6—Zn2—O5	84.7 (4)	
O3—Zn1—O9	177.3 (5)	O11—Zn2—O5	179.6 (6)	
O4—Zn1—O9	87.7 (4)	O12—Zn2—O5	90.2 (4)	
O3—Zn1—O8	93.0 (4)	O1—Zn2—O5	90.9 (5)	
O4—Zn1—O8	90.8 (4)	O7—Zn2—O5	88.3 (4)	
O9—Zn1—O8	88.3 (4)	C7—O1—Zn2	126.0 (8)	
O3—Zn1—O2	90.4 (4)	C9—O2—Zn1	125.7 (9)	
O4—Zn1—O2	91.1 (4)	C7—O3—Zn1	125.8 (7)	
O9—Zn1—O2	88.2 (4)	C8—O4—Zn1	127.2 (8)	
O8—Zn1—O2	176.0 (5)	C8 ⁱ —O5—Zn2	127.1 (8)	
O3—Zn1—O10	87.1 (4)	C9 ⁱⁱ —O6—Zn2	128.0 (9)	
O4—Zn1—O10	178.3 (5)	C10 ⁱⁱⁱ —O7—Zn2	123.7 (7)	
O9—Zn1—O10	90.6 (4)	C6—O8—Zn1	124.1 (9)	
O8—Zn1—O10	88.9 (4)	C10—O9—Zn1	126.4 (6)	
O2—Zn1—O10	89.1 (4)	C5—O10—Zn1	126.9 (9)	
O6—Zn2—O11	95.3 (4)	C5 ^{iv} —O11—Zn2	127.8 (8)	
O6—Zn2—O12	174.6 (5)	C6 ^v —O12—Zn2	124.2 (8)	
O11—Zn2—O12	89.8 (4)	O10—C5—O11 ^{vi}	123.6 (11)	
O6—Zn2—O1	89.2 (5)	O12 ^{vii} —C6—O8	123.0 (12)	
O11—Zn2—O1	89.5 (4)	O3—C7—O1	124.4 (10)	
O12—Zn2—O1	89.3 (4)	O5 ^{viii} —C8—O4	124.6 (10)	
O6—Zn2—O7	92.3 (4)	O2—C9—O6 ^{ix}	127.0 (12)	
O11—Zn2—O7	91.3 (4)	O9—C10—O7 ^x	123.6 (9)	

Table S2. Selected geometric parameters (Å, °)

O12—Zn2—O7	89.1 (4)	C2—N1—C1	113.6 (15)
O1—Zn2—O7	178.2 (6)	C3—N2—C4	114.3 (11)

Symmetry code(s): (i) *x*, *y*+1, *z*; (ii) *x*, *y*+1, *z*-1; (iii) *x*+1, *y*+1, *z*-1; (iv) *x*+1, *y*, *z*-1; (v) *x*+1, *y*, *z*; (vi) *x*-1, *y*, *z*+1; (vii) *x*-1, *y*, *z*; (viii) *x*, *y*-1, *z*; (ix) *x*, *y*-1, *z*+1; (x) *x*-1, *y*-1, *z*+1.

Table S3. Selected hydrogen-bond parameters in DMAZnD at 100 K.

D—H···A	<i>D</i> —Н (Å)	$\mathrm{H}^{\dots}A\left(\mathrm{\AA}\right)$	$D \cdots A$ (Å)	D—H···A (°)
N1—H1A…O7 ⁱ	0.89	1.95	2.821 (11)	167.5
N1—H1B…O10 ⁱⁱ	0.89	1.93	2.819 (12)	172.0
N2—H2A…O4 ⁱⁱⁱ	0.89	2.58	3.230 (17)	130.4
N2—H2A⋯O5	0.89	1.92	2.796 (15)	169.7
N2—H2B…O8	0.89	1.99	2.843 (15)	161.0

Symmetry code(s): (i) *x*, *y*-2, *z*+1; (ii) *x*, *y*-1, *z*; (iii) *x*, *y*+1, *z*.

Figure S5 Frequency dependence of imaginary part of dielectric permittivity and dielectric loss . In all the investigated samples characteristic dipolar relaxation peak shifts to higher frequencies with increasing temperature

Number	Lattice pa experiment	rameters <i>,</i> al (Å and [°])	Symmetry group, experimental	Т (К)	Lattice pa simula	rameters, ted (Å)	Symmetry group, simulated	k- points	ΔE (kJ/mol/ per 2 Zn)	Alignment of DMA ⁺
1.	a = 8.7481 b = 8.7600 c = 8.7568	$\alpha = 55.69$ $\beta = 55.67$ $\gamma = 55.76$	P1 (2)	100	a = 8.7262 b = 8.8993 c = 8.72830	$\alpha = 55.68$ $\beta = 55.92$ $\gamma = 55.77$	P1 (2)	3x3x3	4.05	3 equivalent positions for each (excluding hydrogen atoms)
2.	a = 8.1765 b = 8.1765 c = 22.1350	$\alpha = 90$ $\beta = 90$ $\gamma = 120$	R3c (167)	100	a = 8.2012 b = 8.2089 c = 22.4146	$\alpha = 90.98$ $\beta = 88.04$ $\gamma = 119.58$	P1 (1)	3x3x1	0.00	3 equivalent positions for each (including hydrogen atoms)
3.	a = 11.8870 b = 8.1749 c = 8.8360	$\alpha = 90$ $\beta = 95.42$ $\gamma = 90$	C2/c (15)	100	a = 11.8128 b = 8.3122 c = 8.9044	$\alpha = 90$ $\beta = 95.49$ $\gamma = 90$	C2/c (15)	3x3x3	3.96	3 equivalent positions for each (no H atoms)
4.	a = 8.1565 b = 8.1572 c = 8.6820	$\alpha = 63.29$ $\beta = 63.24$ $\gamma = 60.04$	P1 (2)	?	a = 8.2040 b = 8.2939 c = 8.7036	$\alpha = 62.17$ $\beta = 63.63$ $\gamma = 60.12$	P1 (2)	3x3x3	3.96	2 equivalent positions
5.	a = 8.1391 b = 8.1573 c = 8.6779	$\alpha = 90.00$ $\beta = 116.83$ $\gamma = 119.94$	P1 (1)	100	a = 8.2077 b = 8.655 c = 8.6797	$\alpha = 89.97$ $\beta = 116.25$ $\gamma = 129.21$	P1 (1)	3x3x3	0.10	1 non-parallel
6	-	-	Cc (9)	-	a = 14.1721 b = 8.2599 c = 8.6913	$\alpha = 90.0$ $\beta = 120.65$ $\gamma = 90.0$	Cc (9)	3x3x3	0.08	1 non-parallel

Table S4. Structure data of all possible experimental and DFT optimized phases of DMAZn

Table S5. Relative energy and rotation angles before and after structural optimization.

Structure	Relative energy	Rotation angle before	Rotation angle after
number	(kJ/mol/ per 2 Zn)	optimization (°)	optimization (°)
0	0	0	0
$1 \equiv 0$	0	45	0
2	9.29	90	101.15
3	3.84	135	119.51
4	9.39	180	221.76
5	0.03	225	239.43
$6 \equiv 5$	0.03	270	239.43
$7 \equiv 0$	0	315	$360 \equiv 0$
$8 \equiv 0$	0	$360 \equiv 0$	$360 \equiv 0$

Figure S6 (*a*) *Fits of the dielectric loss using one Havriliak-Negami functions for DMAZn_E, the high-frequency part of the relaxation peak indicate broadened. (b) The transition's region.*

Figure S7 Calculated PXRD diffractograms for DFT-generated structures, numbers correspond to Table 1. of the main manuscript.

- 1 P. Peksa, J. Trzmiel, K. Fedoruk, A. Gagor, M. Šimenas, A. Ciupa, S. Pawlus, J. Banys, M. Mączka and A. Sieradzki, *J. Phys. Chem. C*, 2019, **123**, 23594–23603.
- P. Peksa, J. Trzmiel, M. Ptak, A. Ciupa-Litwa and A. Sieradzki, *Materials (Basel)*., 2021, **14**, 6150.