## **Supporting Information**

## Novel Mn<sup>4+</sup>-activated Fluoride Red Phosphor Cs<sub>30</sub>(Nb<sub>2</sub>O<sub>2</sub>F<sub>9</sub>)<sub>9</sub>(OH)<sub>3</sub>·H<sub>2</sub>O:Mn<sup>4+</sup> With Good Waterproof Stability for WLEDs

Yingyuan Chen,<sup>a</sup> Feilong Liu,<sup>a</sup> Ziwang Zhang,<sup>a</sup> Junyu Hong,<sup>a</sup> Maxim S. Molokeev,<sup>bcd</sup> Ivan A. Bobrikov,<sup>e</sup> Jianxin Shi,<sup>a</sup> Jianbang Zhou\*<sup>af</sup> and Mingmei Wu\*<sup>a</sup>

- a. MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275/Zhuhai 519082, P. R. China. Email: ceswmm@mail.sysu.edu.cn
- b. Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
- c. Siberian Federal University, Krasnoyarsk 660041, Russia
- d. Department of Physics, Far Eastern State Transport University, Khabarovsk 680021, Russia
- e. Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
- f. Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, PR China. Email: zhoujb4079@foxmail.com
- \* Email: ceswmm@mail.sysu.edu.cn (M. M. Wu), zhoujb4079@foxmail.com (J. B. Zhou)

| Chemical formula              | Cs <sub>30</sub> (Nb <sub>2</sub> O <sub>2</sub> F <sub>9</sub> )9·4(H <sub>2</sub> O,OH,O) |              |             |             |  |
|-------------------------------|---------------------------------------------------------------------------------------------|--------------|-------------|-------------|--|
| Sp.Gr.                        | <i>P</i> -3 <i>m</i> 1                                                                      |              |             |             |  |
| Cell parameters (Å, °)        | <i>a</i> = 21.3475 (6)                                                                      |              |             |             |  |
|                               | c = 8.5095(3)                                                                               |              |             |             |  |
| Volume (Å <sup>3</sup> ), $Z$ | <i>V</i> = 3358.4 (2), 1                                                                    |              |             |             |  |
| Data                          | X-ray                                                                                       | T.O.F.1      | T.O.F.2     | T.O.F.3     |  |
| 2θ-interval (°)               | 6.5-140                                                                                     | _            | _           | _           |  |
| T.O.F. interval (µs)          | _                                                                                           | 6041-46297   | 17792-80000 | 7408-40000  |  |
| <i>d</i> -interval (Å)        | 0.820-13.587                                                                                | 1.473-11.291 | 1.229-5.519 | 0.714-3.857 |  |
| No. of reflections            | 108                                                                                         | 428          | 707         | 3431        |  |
| $R_{wp}$ (%)                  | 2.44                                                                                        | 3.78         | 2.09        | 0.72        |  |
| $R_p$ (%)                     | 2.42                                                                                        | 2.650        | 2.46        | 0.65        |  |
| $R_B$ (%)                     | 3.84                                                                                        | 3.25         | 0.61        | 2.61        |  |

Table S1 Main parameters of processing and refinement of the samples

|     |              |              | 1 1         | 1                | ( )  |
|-----|--------------|--------------|-------------|------------------|------|
|     | x            | У            | Z           | B <sub>iso</sub> | Occ. |
| Cs1 | 0.1919 (2)   | 0.09595 (12) | 0.2713 (8)  | 0.7 (2)          | 1    |
| Cs2 | 0.3357 (3)   | 0            | 0           | 0.8 (3)          | 1    |
| Cs3 | 0.3307 (3)   | 0            | 0.5         | 0.8 (3)          | 1    |
| Cs4 | 0.5084 (2)   | 0.25422 (11) | 0.7550 (6)  | 0.6 (2)          | 1    |
| Cs5 | 0.57850 (14) | 0.42150 (14) | 0.2799 (7)  | 0.7 (2)          | 1    |
| Nb1 | 0.4041 (2)   | 0.20203 (12) | 0.2952 (6)  | 1.1 (3)          | 1    |
| 01  | 0.4731 (5)   | 0.2365 (2)   | 0.1627 (12) | 0.85 (18)        | 1    |
| F1  | 0.3312 (4)   | 0.1656 (2)   | 0.5052 (11) | 0.85 (18)        | 1    |
| F2  | 0.4556 (6)   | 0.2897 (4)   | 0.4271 (9)  | 0.85 (18)        | 1    |
| F3  | 0.3441 (5)   | 0.1055 (4)   | 0.2304 (12) | 0.85 (18)        | 1    |
| Nb2 | 0.2789 (3)   | 0.13947 (12) | 0.7340 (6)  | 1.2 (3)          | 1    |
| 02  | 0.2567 (4)   | 0.1283 (2)   | 0.9106 (7)  | 0.85 (18)        | 1    |
| F4  | 0.3534 (2)   | 0.1153 (3)   | 0.7664 (8)  | 0.85 (18)        | 1    |
| F5  | 0.2223 (4)   | 0.0555 (4)   | 0.6495 (7)  | 0.85 (18)        | 1    |
| Nb3 | 0.53592 (13) | 0.0719 (3)   | 0.8048 (6)  | 1.0 (2)          | 1    |
| 03  | 0.5620 (2)   | 0.1240 (4)   | 0.6658 (8)  | 0.85 (18)        | 1    |
| F6  | 0.5          | 0            | 1           | 0.85 (18)        | 1    |
| F7  | 0.4979 (3)   | 0.1158 (3)   | 0.9303 (7)  | 0.85 (18)        | 1    |
| F8  | 0.4412 (3)   | 0.0062 (4)   | 0.7422 (8)  | 0.85 (18)        | 1    |
| O1W | 1/3          | 2/3          | 0.707 (3)   | 0.85 (18)        | 1    |
| O2W | 0            | 0            | 0.5         | 0.85 (18)        | 1    |
| O3W | 0            | 0            | 0           | 0.85 (18)        | 1    |

 Table S2 Fractional atomic coordinates and isotropic displacement parameters (Å<sup>2</sup>)

Table S3 Main bond lengths (Å)

|                       | Bond lengths (Å) |                        | Bond lengths (Å) |
|-----------------------|------------------|------------------------|------------------|
| Cs1—F1                | 3.256 (9)        | Cs5—F7 <sup>viii</sup> | 3.327 (8)        |
| Cs1—F3                | 3.172 (8)        | Cs5—F8 <sup>ix</sup>   | 3.299 (7)        |
| Cs1—O2 <sup>i</sup>   | 3.294 (9)        | Cs5—O1W <sup>x</sup>   | 3.262 (3)        |
| Cs1—F5 <sup>ii</sup>  | 3.076 (7)        | Nb1—O1                 | 1.703 (9)        |
| Cs2—F3 <sup>iii</sup> | 2.922 (9)        | Nb1—F1                 | 2.237 (9)        |
| Cs2—F4 <sup>ii</sup>  | 3.037 (6)        | Nb1—F2                 | 1.978 (9)        |
| Cs2—F7 <sup>ii</sup>  | 3.145 (6)        | Nb1—F2 <sup>v</sup>    | 1.978 (9)        |
| Cs2—F8 <sup>ii</sup>  | 3.099 (7)        | Nb1—F3                 | 1.885 (8)        |
| Cs3—F2 <sup>iv</sup>  | 3.254 (9)        | Nb1—F3 <sup>v</sup>    | 1.885 (8)        |
| Cs3—F3 <sup>ii</sup>  | 3.125 (9)        | Nb2—O2                 | 1.558 (8)        |
| Cs3—F4 <sup>ii</sup>  | 3.199 (6)        | Nb2—F4                 | 1.920 (6)        |
| Cs3—F5 <sup>ii</sup>  | 3.333 (7)        | Nb2—F5                 | 1.740 (7)        |
| Cs3—F8 <sup>ii</sup>  | 3.086 (7)        | Nb3—O3 <sup>xi</sup>   | 1.525 (8)        |
| Cs4—F2                | 3.238 (9)        | Nb3—F6 <sup>xii</sup>  | 2.127 (5)        |
| Cs4—F4                | 3.154 (5)        | Nb3—F7 <sup>xi</sup>   | 1.855 (6)        |
| Cs4—F7                | 3.217 (6)        | Nb3—F7                 | 1.855 (6)        |
| $Cs4$ — $F7^{v}$      | 3.217 (6)        | Nb3—F8 <sup>xi</sup>   | 1.871 (7)        |
| Cs5—F2 <sup>vi</sup>  | 2.998 (9)        | Nb3—F8                 | 1.871 (7)        |
| Cs5—O3 <sup>vii</sup> | 3.340 (9)        |                        |                  |

Symmetry codes for Cs<sub>30</sub>(Nb<sub>2</sub>O<sub>2</sub>F<sub>9</sub>)9·4H<sub>2</sub>O: (i) *x*, *y*, *z*-1; (ii) *x*-*y*, -*y*, -*z*+1; (iii) *x*-*y*, -*y*, -*z*; (iv) *y*, -*x*+*y*, -*z*+1; (v) *x*, *x*-*y*, *z*; (vi) -*y*+1, -*x*+1, *z*; (vii) -*x*+*y*+1, -*x*+1, *z*; (viii) -*x*+*y*+1, -*x*+1, -*x*+*y*+1, -*z*+1; (x) -*x*+1, -*x*+*y*, -*z*+1; (x) -*x*+*y*+1, *y*, *z*; (xii) -*x*+1, -*y*, -*z*+2.



Fig. S1 TGA of CNOF sample.

There is a continuing and slow weight loss slop with the temperature increasing up to 470 °C, indicating the presence of water molecules and OH<sup>-</sup>.



Fig. S2 Photos of CNOFM with different Mn<sup>4+</sup> contents under daylight.



Fig. S3 SEM image and elemental mapping of the CNOF:Mn<sup>4+</sup>.

**Table S4** Actual Mn<sup>4+</sup> content, lifetime, internal PL quantum yields (IQE), adsorption efficiency (AE) and external PL quantum yields (EQE) of CNOFM phosphors.

| Nominal content of [Mn] (at.%) | 3    | 5    | 7    | 9    | 11   |
|--------------------------------|------|------|------|------|------|
| Actual [Mn] (at.%)             | 2.85 | 4.16 | 6.66 | 9.68 | 11.4 |
| IQE (%)                        | 21.0 | 24.2 | 29.6 | 23.6 | 22.2 |
| AE (%)                         | 23.5 | 28.5 | 33.7 | 39.2 | 40.2 |
| EQE (%)                        | 4.93 | 6.90 | 10.0 | 9.25 | 8.92 |
| Lifetime (ms)                  | 1.30 | 1.38 | 1.37 | 1.36 | 1.40 |



**Fig. S4** Diffuse reflection spectra of CNOF and CNOFM, and the excitation (Ex)emission (Em) spectra of CNOFM.



**Fig. S5** Absorption spectra for the leachate of the immersed CNOFM and KSFM phosphors, as well as the KMnO<sub>4</sub> and another leachate of the immersed CNOFM treated with periodic acid.

The CNOFM phosphor evidently exhibits better waterproof properties, and this phenomenon is similar to Cs<sub>2</sub>NbOF<sub>5</sub>:Mn<sup>4+</sup> phosphor reported by J. Zhou and et cetera, which is another Mn<sup>4+</sup>-activated phosphors centered at Nb(V).<sup>1</sup> J. Zhou propounded a kind of disproportionation reaction mechanism as follow for better understanding of the enhanced waterproof property of the Nb(V) centered fluoride phosphors.

$$5Mn^{4+} + 8H_2O \xrightarrow{Nb^{5+}} 2MnO_4^- + 3Mn^{2+} + 16H^{4+}$$

The slightly solute Nb(V) catalyzed the disproportionation reaction of the dissolved  $Mn^{4+}$  ions and instantly generated the soluble  $Mn^{2+}$  and  $MnO_4^{-}$  ions (Fig.S4) rather than the dark Mn-oxides. Then a shell without  $Mn^{4+}$  can be formed on the surface of CNFOM and the hydrolysis of  $[MnF_6]^{2-}$  groups will be prevented, and therefore, properly enhanced the water-resistant ability of the phosphors.<sup>1</sup>

## Reference

J. Zhou, Y. Chen, C. Jiang, B. Milićević, M. S. Molokeev, M. G. Brik, I. A. Bobrikov,
 J. Yan, J. Li and M. Wu, *Chem. Eng. J.*, 2021, **405**, 126678.