Excitation wavelength-dependent anti-thermal quenching of upconversion luminescence in hexagonal NaGdF₄:Nd³⁺/Yb³⁺/Er³⁺ nanocrystals

Tao Pang^{1,#,*}, Yanyan Wu^{1,#}, Yujian Zhang², Ronghua Jian¹, Junwen Mao¹, Hong Wang^{3,*}, Hai Guo^{4,*}

¹ College of Science, Huzhou University, Huzhou, 313000, China

² College of Engineering, Huzhou University, Huzhou, 313000, China

³ Physics Department, Dalian Maritime University, Dalian, 116026, China

⁴ Department of Physics, Zhejiang Normal University, Jinhua, 321004, China

[#] These authors contributed equally to this work

*corresponding author E-mail address: tpang@126.com, hongwang@dlmu.edu.cn, ghh@zjnu.cn

Supporting materials

I. Rate equations for UC luminescence dynamics

To simplify the problem, several unimportant processes are omitted, such as the radiative transition of ${}^{4}I_{13/2}$ to ${}^{4}I_{15/2}$. Therefore, according to a simple six-level model (see Figure S2), the luminescence dynamics process is described as follows:

$$\frac{dN_0}{dt} = A_{50}N_5 + A_{40}N_4 - W_{ET2}N_{Yb1}N_0 \tag{1}$$

$$\frac{dN_1}{dt} = W_{21}N_2 - W_{ET4}N_{Yb1}N_1 \tag{2}$$

$$\frac{dN_2}{dt} = W_{ET2}N_{Yb1}N_0 - W_{ET3}N_{Yb1}N_2 - W_{21}N_2$$
(3)

$$\frac{dN_4}{dt} = W_{54}N_5 + W_{ET4}N_{Yb1}N_1 - W_{43}N_4 - A_{40}N_4 \tag{4}$$

$$\frac{dN_5}{dt} = W_{ET3}N_{Yb1}N_2 - A_{50}N_5 - W_{54}N_5 \tag{5}$$

where N_0 , N_1 , N_2 , N_3 , N_4 , N_5 , $N_{\gamma b1}$ are populations of levels ${}^{4}I_{15/2}$ (Er³⁺), ${}^{4}I_{13/2}$ (Er³⁺), ${}^{4}I_{11/2}$ (Er³⁺), ${}^{4}I_{9/2}$ (Er³⁺), ${}^{4}F_{9/2}$ (Er³⁺), ${}^{2}H_{11/2}{}^{/4}S_{3/2}$ (Er³⁺), and ${}^{2}F_{5/2}$ (Yb³⁺), respectively, W_{ET2} , W_{ET3} , W_{ET4} are energy transfer rates from Yb³⁺ to Er³⁺, W_{21} , W_{43} , and W_{54} are the multi-

phonon relaxation rates of levels ${}^{4}I_{11/2}$ (Er³⁺), ${}^{4}F_{9/2}$ (Er³⁺), and ${}^{4}S_{3/2}$ (Er³⁺).

At steady state $(dN_i/dt = 0)$, from Eqs. (3) and (5) we obtain

$$N_{5} = \frac{W_{ET2} W_{ET3} N_{Yb1}^{2} N_{0}}{(A_{50} + W_{54}) (W_{ET3} N_{Yb1} + W_{21})}$$
(6)

Further, according to Eqs. (2), (3), (4) and (6) we obtain

$$N_{4} = \frac{1}{W_{43} + A_{40}} \left[\frac{W_{ET2} W_{ET3} W_{54} N_{0} N_{Yb1}^{2}}{(A_{50} + W_{54}) (W_{ET3} N_{Yb1} + W_{21})} + \frac{W_{ET2} N_{0} W_{21}}{W_{ET3} + W_{21} / N_{Yb1}} \right]$$
(7)

Taken together, N₄ and N₅ are both increasing function of N_{Yb1}. Upon 808 nm excitation with low pump power, N_{Yb1} takes the form

$$N_{Yb1} = \frac{W_{ET1}N_{Yb0}N_{Nd1}}{W_{ET2}N_0 + W_{ET3}N_2 + W_{ET3}N_1} \approx \frac{W_{ET1}N_{Yb}\rho_{808}\sigma_{Nd}N_{Nd}}{W_{ET2}N_{Er}}$$
(8)

In contrast, under 980 nm excitation with low pump power, N_{Yb1} is re-written as follows:

$$N_{Yb1} = \frac{\rho \sigma N_{Yb0}}{W_{ET2}N_0 + W_{ET3}N_2 + W_{ET3}N_1} \approx \frac{\rho_{980}\sigma_{Yb}N_{Yb}}{W_{ET2}N_{Er}}$$
(9)

where W_{ET1} are energy transfer rates from Nd³⁺ to Yb³⁺, ρ_{808} and ρ_{980} are the output power of lasers, σ_{Nd} is the absorption cross-section of Nd³⁺ ions at 808 nm, σ_{Yb} is the absorption crosssection of Yb³⁺ ions at 980 nm, N_{Yb0} and N_{Nd1} are populations of ${}^{2}F_{7/2}$ (Yb³⁺) and ${}^{4}F_{5/2}$ (Nd³⁺), respectively, N_{Er} , N_{Yb} and N_{Nd} are the concentration of Er³⁺, Yb³⁺ and Nd³⁺ ions, respectively.

Figure S1 High resolution SEM image of the sample with $1\% Nd^{3+}$

Figure S2 Proposed population pathways for upconversion luminescence of Nd^{3+} , Yb^{3+} and Er^{3+} tri-doping

Figure S3 Rietveld refinement of XRD pattern at three representative temperatures. (a) 300 K; (b) 400 K; (c) 500 K; (d) cell parameters at various temperatures.

Figure S4 394 nm-responsive PL spectra of NaGdF₄:5%Eu³⁺ at various temperatures

Figure S5 Upconversion luminescence properties at various temperature. (a) Upconversin spectra of NaGdF₄:Yb³⁺/Er³⁺ under 980 nm excitation; (b) Dependence of emission intensity originated from Er^{3+} on temperature; (c) Upconversin spectra of NaGdF₄:Yb³⁺/Ho³⁺ under 980 nm excitation; (b) Dependence of emission intensity originated from Ho³⁺ on temperature

Figure S6 Normalized upconversion spectra of NaGdF₄:Nd³⁺/Yb³⁺/Er³⁺ under 808 nm excitation and various temperatures as well as part of the visibility function V(λ) in the 500-570 nm range.