Supporting information

Two luminescent cuprous iodides with hitherto-unknown free imidazolate sites for efficiently sensing Fe³⁺ and Cr₂O₇²⁻

Qian Peng,[†] Xing Liu,[†] and Jian Zhou^{*,†}

†Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing

Normal University, Chongqing 401331, P. R. China

General Remarks

All analytical grade chemicals were obtained commercially and used without further purification. Elemental analyses (C and H) were performed using a PE2400 II elemental analyzer. PXRD patterns were obtained using a Bruker D8 Advance XRD diffractometer with Cu K α radiation ($\lambda = 1.54056$ Å). IR spectra were obtained from a powdered sample pelletized with KBr on an ABB Bomen MB 102 series IR spectrophotometer in the range of 400–4000cm⁻¹. The solide-state UV/Vis spectra were measured at room temperature using an Agilent Cary 5000 UV/Vis spectrophotometer. Photoluminescent spectrum and lifetime were performed on an Edinburgh FLS 980 analytical instrument equipped with 450 W xenon lamp and UF900H high-energy microsecond flash-lamp as the excitation source. The quantum yield (QY) is measured by the Edinburgh FLS1000 fluorescence, which is equipped with a 450W Xe lamp and a monochromator for wavelength discrimination, an integrating sphere for the sample chamber, and an R928P analyzer for signal detection. The XPS spectra were collected on an AEI (Kratos) ES 200 B X-ray photoelectron spectrometer with a base pressure of about ~10–8 Torr.

Crystal Structure Determinations

The intensity data of **1** and **2** were collected on a Bruker diffractometer-SMART-APEX II using a ω -scan method with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Data reduction and absorption corrections were performed using the SAINT and SADABS software packages,^{S1} respectively. The structures were solved by direct methods using SHELXS-97 and refined by full-matrix least-squares on F² using the SHELXL-97 program.^{S2} The non-hydrogen atoms were refined anisotropically. H atoms were placed in idealized locations and refined as riding. Technical details of data collections and refinement are summarized in Table S1.

	1	2
Chemical formula	$C_{20}H_{16}Cu_4I_4N_{12}\\$	$C_{20}H_{16}Cu_{2}I_{4}N_{12}Pb \\$
Fw	1186.2	1266.35
Crystal system	monoclinic	monoclinic
Space group	C2/c	C2/c
a (Å)	15.5655(11)	16.4277(8)
b (Å)	11.3560(9)	10.8605(6)
c (Å)	17.3817(11)	17.2943(8)
β (deg)	92.384(2)	98.6794(19)
V (Å ³)	3069.8(4)	3050.2(3)
Ζ	8	4
T (K)	296(2)	296(2)
$\rho_{calc}(g.cm^{-3})$	2.567	2.758
F(000)	2192	2288
θ range (deg)	$3.191 \le \theta \le 25.095$	$3.141 \le \theta \le 27.483$
Reflections collected	14079	10540
Unique reflections	2741	3446
Reflections (I>2o(I))	2248	2764
R1, wR2 [I>2σ(I)] ^[a]	0.0345, 0.0749	0.0530,0.1154
R1, wR2 (all data)	0.0495, 0.0832	0.0722,0.1230
goodness-of-fit on F ²	1.054	1.042

Table S1 Crystallographic data for 1 and 2.

Computational methods

The band structure and density of states (DOS) of **1** and **2** were theoretically calculated by using the computer code CASTEP.^{s3} The total energy is calculated with the density functional theory (DFT) using the Perdew–Burke–Ernzerhof generalized gradient approximation (GGA).^{s4} The following orbital electrons are treated as valence electrons: H 1s¹, N 2s² 2p³, C 2s² 2p², Cu 3d¹⁰ 4s¹, I 5s² 5p⁵ and 5d¹⁰ 6s² 6p². The number of plane waves included in the basis is determined by a cutoff energy of 270 eV, and the numerical integration of the Brillouin zone is performed using a Monkhorst–Pack k point sampling: $2 \times 2 \times 1$. The Fermi level (E_F = 0 eV) was selected as the reference of the energy.

Fig. S1 The coordination mode of HL ligand.

Fig. S2 a) The layer constructured by the N–H…N H-bonds in 1. b) the 3-D supramolecular structure.

Fig. S3 a) The layer constructured by the N–H \cdots N H-bonds in 2. b) the 3-D network structure.

Fig. S4 The UV–vis spectra of 1, 2, HL, CuI and PbI_2 at room temperature.

Fig. S5 Emission spectra of 1 and 2 at room temperature

Fig. S6 Temperature dependent luminescent intensity of 1 (a) and 2 (b). The theoretical fitting data from Arrhenius-type model for 1 (c) and 2 (d).

Fig. S7 Simulated, experimental and after immersed XRD patterns of 1 (a) and 2 (b).

Fig. S8 IR of 1-2 and 1-2 treated with $Fe^{3+} Cr_2O_7^{2-}$.

Fig. S9 Luminescent intensity of 1 and 2 after three recycles (C1, C2, C3) in Fe³⁺ (a) ,(b) and $Cr_2O_7^{2-}(c)$,(d) solutions (0.01 mol/L).

Fig. S10 Luminescent intensity of 1 and 2 at different reaction times in Fe³⁺ and $Cr_2O_7^{2-}$ solutions

References

- (s1) APEX3, SADABS, and SAINT, Bruker AXS Inc., Madison, WI, USA, 2008.
- (s2) Sheldrick, G.M. Acta Crystallogr Sect. A Found. Crystallogr. 2008, 64, 112.
- (s3) (a) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.;
 Clark, S. J.; Payne, M. C. J. Phys.: Condens. Matter, 2002, 14, 2717; (b) Milman,
 V.; Winkler, B.; White, J. A.; Pickard, C. J.; Payne, M. C.; Akhmatskaya, E. V.;
 Nobes, R. H. Int. J. Quantum Chem. 2000, 77, 895.
- (s4) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.