Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Electronic influence of ultrathin aluminum oxide on the transistor device performance of binary indium/tin oxide films.

M. Isabelle Büschges,^a Vanessa Trouillet,^b Jörg J. Schneider^{*a}

 Table S1 Binding energies of the core levels Al 2p, Sn 3d, In 3d and O 1s for the thin-films ITAO 1-3.

	ITAO 1	ITAO 2	ITAO 3
	BE [eV]	BE [eV]	BE [eV]
Al 2p _{3/2}	73.8	73.9	74.0
Al 2p _{1/2}	74.4	74.5	74.6
Sn 3 <i>d</i> _{5/2}	486.6	486.6	486.8
In 3 <i>d</i> _{5/2}	444.5	444.5	444.5
O 1s M _x -O _y In ₂ O ₃ /SnO ₂	530.1	530.1	530.1
O 1s M _x -O _y Al ₂ O ₃	531.7	531.5	531.2
O 1s M-OH	532.7	532.6	532.5

Fig. S1 Auger lines of In and valence band of Sn for the heterostructure ITAO 2.

Fig. S2 Tauc plots for the thin-films a) 26:15:1, b) 26:15:2, and c) 26:15:3 as-deposited, annealed for 20 min and 40 min at 400°C.

	Table S2 Calculated band ga	aps depending on	post-deposition annea	ling time and corre	sponding film thickness.
--	-----------------------------	------------------	-----------------------	---------------------	--------------------------

	Eg [eV]			Film thickness [nm]		
Composition In ₂ O ₃ /SnO ₂ /Al ₂ O ₃	As deposited	20 Min @400°C	40 Min @400°C	As deposited	20 Min @400°C	40 Min @400°C
26:15:1	2.98	3.09	3.08	12.91	12.53	12.52
26:15:2	3.04	3.14	3.12	14.56	14.06	14.06
26:15:3	3.06	3.15	3.15	15.80	15.33	15.30

Fig. S3 Measuring setup consisting of a temperature controllable chuck, equipped with thermometer. Source, drain, and gate probes, as well as the LED fixture for the illumination experiments is shown.

	26:15:1		26:15:2		26:15:3	
Energy [eV]	V _{on} [V]	I _{off} [A]	V _{on} [V]	I _{off} [A]	V _{on} [V]	I _{off} [A]
Dark	-5.4	1.14.10-6	-1.7	5.48·10 ⁻⁸	-1.1	3.27·10 ⁻⁹
2.0	-5.7	1.18.10-6	-1.8	5.63·10 ⁻⁸	-1.1	3.49·10 ⁻⁹
2.3	-6.0	1.21·10 ⁻⁶	-2.0	5.76·10 ⁻⁸	-1.1	3.56·10 ⁻⁹
2.6	-6.0	1.24·10 ⁻⁶	-2.2	5.92·10 ⁻⁸	-1.2	3.68·10 ⁻⁹
3.1	-6.6	1.29·10 ⁻⁶	-2.5	6.19·10 ⁻⁸	-1.6	3.89·10 ⁻⁹
3.2	-7.1	1.34·10 ⁻⁶	-3.0	6.55·10 ⁻⁸	-1.9	4.18·10 ⁻⁹
3.4	-7.2	1.41.10-6	-3.4	7.07·10 ⁻⁸	-2.4	4.60·10 ⁻⁹
3.7	-7.6	1.47·10 ⁻⁶	-4.0	7.58·10 ⁻⁸	-2.4	5.00·10 ⁻⁹

Table S3 Dependence of the transistor parameters V_{on} and I_{off} on the illumination energies ranging from 2.0 to 3.7 eV.

For calculating the charge carrier density the following ϵ -values were used:

Table S4 Values used and obtained for the calculation of the charge carrier densities.

	ε	n _{free}	n _{free}	n _{free}
		ITAO 1	ITAO2	ITAO3
In ₂ O ₃	8.9 ¹	2.95·10 ¹⁶	2.24·10 ¹⁶	2.01·10 ¹⁶
SnO ₂	7.031 ²	3.74·10 ¹⁶	2.84·10 ¹⁶	2.54·10 ¹⁶

With C_{ox} = 3.64·10⁻⁸ F·cm⁻² and T = 298 K.

- 1 I. Hamberg and C. G. Granqvist, Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows, *J. Appl. Phys.*, 1986, **60**, R123-R160.
- 2 M. A. Yıldırım, S. T. Yıldırım, E. F. Sakar and A. Ateş, Synthesis, characterization and dielectric properties of SnO2 thin films, *Spectrochim. Acta A: Mol. Biomol. Spectrosc.*, 2014, **133**, 60–65.