Supporting Information (SI)

Modulating Electronic and Optical Properties of Monolayered MoS_2 by Covalent Mono- and Bisfunctionalization

Kangli Wang*, Marco Kapitzke, Lauren Green, and Beate Paulus

Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany

E-mail: klwang0329@zedat.fu-berlin.de

Content:

Fig. S1: (a) The QP band gaps of the functionalized $2H-MoS_2$ with $-CH_3$ group as a function of vacuum thickness with 50 eV G_0W_0 self-energy and 12×12 k-point sampling (2×2 supercell). (b) The QP band gaps of the functionalized $2H-MoS_2$ with $-CH_3$ group as a function of k-point sampling with 50 eV G_0W_0 self-energy and 8 Å vacuum thickness (2×2 supercell). (c) Optical absorption spectra of the functionalized $2H-MoS_2$ with $-CH_3$ group as a function of the number of valence and conduction bands with 50 eV self-energy and 8 Å vacuum thickness (2×2 supercell).

Fig. S2: Optimized structures of functionalized 2H-MoS₂ and 1T'-MoS₂ with various groups.

Fig. S3: Average energy difference ΔE between functionalized 2H- and 1T'-MoS₂ as a function of the group coverage. Here $\Delta E = (E_{1T'} - E_{2H})/m$, where *m* is the number of MoS₂ units, $E_{1T'}$ and E_{2H} are the total energy of functionalized 2H- and 1T'-MoS₂ for a given coverage, respectively. The positive ΔE indicates that functionalized 2H-MoS₂ is more stable, while the negative ΔE indicates that functionalized 1T'-MoS₂ is more stable.

Fig. S4: Average Bader charge transfer ΔQ as a function of the group coverage with respect to the 2H- and 1T'-MoS₂ monolayers. Here $\Delta Q = \sum_{i}^{N} (Z_i - Q_i^{Bader})/n$, where N is the total number of atoms in the attached groups, Z_i is the number of electrons of atom i, Q_i^{Bader} is the Bader charge of atom i and n is the number of functional groups. A positive charge transfer value indicates electron flow from the substrate to the functional group.

Fig. S5: DFT band gaps as a function of the group coverage with respect to the functionalized 2H-MoS₂ and 1T'-MoS₂ monolayers.

Fig. S6: Total density of states and the projected density of states for the functionalized (a) 2H-MoS₂ and (b) 1T'-MoS₂ calculated by PBE functional.

Fig. S7: Optical absorption spectra of the functionalized $1T'-MoS_2$ monolayer.

Table S1: The optical band gap (E_{opt}) for the functionalized 2H-MoS₂ at 6.25% coverage. Energies are in eV.

Fig. S1: (a) The QP band gaps of the functionalized 2H-MoS₂ with $-CH_3$ group as a function of vacuum thickness with 50 eV G₀W₀ self-energy and 12×12 k-point sampling (2×2 supercell). (b) The QP band gaps of the functionalized 2H-MoS₂ with $-CH_3$ group as a function of k-point sampling with 50 eV G₀W₀ self-energy and 8 Å vacuum thickness (2×2 supercell). (c) Optical absorption spectra of the functionalized 2H-MoS₂ with $-CH_3$ group as a function of the number of valence and conduction bands with 50 eV self-energy and 8 Å vacuum thickness (2×2 supercell).

Fig. S2: Optimized structures of functionalized $2H-MoS_2$ and $1T'-MoS_2$ with various groups.

S6

S7

S9

Fig. S3: Average energy difference ΔE between functionalized 2H- and 1T'-MoS₂ as a function of the group coverage. Here $\Delta E = (E_{1T'} - E_{2H})/m$, where *m* is the number of MoS₂ units, $E_{1T'}$ and E_{2H} are the total energy of functionalized 2H- and 1T'-MoS₂ for a given coverage, respectively. The positive ΔE indicates that functionalized 2H-MoS₂ is more stable, while the negative ΔE indicates that functionalized 1T'-MoS₂ is more stable.

Fig. S4: Average Bader charge transfer ΔQ as a function of the group coverage with respect to the 2H- and 1T'-MoS₂ monolayers. Here $\Delta Q = \sum_{i}^{N} (Z_i - Q_i^{Bader})/n$, where N is the total number of atoms in the attached groups, Z_i is the number of electrons of atom i, Q_i^{Bader} is the Bader charge of atom i and n is the number of functional groups. A positive charge transfer value indicates electron flow from the substrate to the functional group.

Fig. S5: DFT band gaps as a function of the group coverage with respect to the functionalized $2H-MoS_2$ and $1T'-MoS_2$ monolayers.

Fig. S6: Total density of states and the projected density of states for the functionalized (a) 2H-MoS₂ and (b) 1T'-MoS₂ calculated by PBE functional.

Fig. S7: Optical absorption spectra of the functionalized $1T'-MoS_2$ monolayer.

	2 H-MoS $_2$	-F	$-\mathrm{NH}_2$	-CH ₃	$-CH_2CH_2CN$	-CH ₂ CH ₂ OH
$E_{\rm opt}$	1.84	1.14	0.55	0.37	0.49	0.37
$E_{\rm ext}$	0.67	0.67	0.65	0.63	0.60	0.64
	-Ph	$-PhNO_2$	PhOH	m-F/-NH ₂	$m-NH_2/-CH_3$	m-CH ₃ /-Ph
$E_{\rm opt}$	0.37	0.43	0.37	1.49	0.48	0.17
$E_{\rm ext}$	0.63	0.59	0.62	0.73	0.63	0.82
	$s-F/-NH_2$	$s-NH_2/-CH_3$	s-CH ₃ /-Ph			
$E_{\rm opt}$	1.49	0.48	0.17			
$E_{\rm ext}$	0.73	0.63	0.82			

Table S1: The optical band gap $(E_{\rm opt})$ for the functionalized 2H-MoS₂ at 6.25% coverage. Energies are in eV.