Supporting Information

Enhancing H₂O₂ and Glucose Double Detection by Surface Microstructure Regulation of Brussels Sprouts-Like Ni-Co(OH)₂/rGO/Carbon Cloth Composite

Xinmeng Zhang,*a Zixuan Mao,a Wanyin Ge,a Jiajing Zhu,a Yuanxiao Zhaob

^aSchool of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China

^bState Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, China

Author Information

*Corresponding Author: Xinmeng Zhang,

E-mail Address: zhangxinmeng12@126.com

Fig. S1 (a, b) SEM images of the Co(OH)₂/CC and (c, d) Ni/CC composites.

Fig. S2 SEM image of the Ni-Co(OH)₂/rGO/CC composite and the measurement results of diameters of Ni-Co(OH)₂ microparticles.

Fig. S3 SEM images of (a) Ni-Co(OH)₂/rGO1/CC, (b) Ni-Co(OH)₂/rGO2/CC, (c) Ni-Co(OH)₂/rGO3/CC, and (d) Ni-Co(OH)₂/rGO4/CC composites.

Fig. S4 Digital photograph of Ni-Co(OH)₂/rGO/CC composites in aqueous solution with different content of rGO after the hydrothermal reaction.

Fig. S5 The FE-SEM images of rGO/CC composites with (a, b) 1.0, (c, d) 2.0, (e, f) 3.0, and (g, h)

4.0 mg mL⁻¹ content of rGO with different magnification.

Fig. S6 I-t curves of the rGO/CC electrodes were prepared by different content of rGO (1.0, 2.0,

3.0, and 4.0 mg mL⁻¹) with the successive addition of different concentrations of H_2O_2 at -0.57 V.

Fig. S7 The SEM images of Ni-Co(OH)₂/rGO3/CC composites with hydrothermal reaction time: (a) 3 h, (b) 6 h, (c) 9 h, (d) 12 h, (e) 18 h, and (f) 24 h (The other experimental conditions remain unchanged).

Fig. S8 (a) The CVs of Ni-Co(OH)₂/rGO3/CC electrodes with different hydrothermal reaction times at the scan rate of 50 mV·s⁻¹. (b) I-t curves of the Ni-Co(OH)₂/rGO3/CC electrodes were prepared with different hydrothermal reaction times by the successive addition of different concentrations of H_2O_2 at -0.57 V.

Fig. S9 The SEM images of the content with (a) Ni is 0.25 mM, and Co is 0.50 mM; (b) Ni is 0.50 mM, and Co is 1.00 mM; (c) Ni is 0.75 mM, and Co is 1.50 mM; (d) Ni is 1.00 mM, and Co is 2.00 mM; (e) Ni is 1.25 mM, and Co is 2.50 mM. (f) I-t curves of the Ni-Co(OH)₂/rGO3/CC electrodes with different concentrations of Ni and Co with the successive addition of different concentrations of H₂O₂ at -0.57 V (The other experimental conditions remain unchanged).

Fig. S10 (a) The CVs of Ni-Co(OH)₂/rGO3/CC electrodes in the presence and absence of 1 mM H_2O_2 at -0.57 V. (b) The lowest concentration can be detected of Ni-Co(OH)₂/rGO3/CC electrode in the experiment. (c) The CVs of Ni-Co(OH)₂/rGO3/CC electrode before and after 30 days of storage at room temperature.

Fig. S11 The corresponding calibration curves and calibration equations of Ni-Co(OH)₂/rGO1/CC,

Ni-Co(OH)₂/rGO2/CC, Ni-Co(OH)₂/rGO3/CC, and Ni-Co(OH)₂/rGO4/CC composites.

Fig. S12 The variation trends of the peak potential versus the natural logarithm of scan rate for detection (a) H_2O_2 and (b) glucose.

Fig. S13 The distribution of 5 μ L water droplet on CC without hydrothermal reaction and the surface

water contact angle is 143.0°.

Fig. S14 The CVs of (a) CC, (b) rGO/CC, (c) Ni-Co(OH)₂/CC, and (d) Ni-Co(OH)₂/rGO/CC electrodes were performed from -0.1 to 0 V with different scan rates. (e) Current versus scan rates based on the CVs curves of (a-d) at a voltage of -0.05 V.

Samples	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$	W_{o} -R (Ω)
Ni-Co(OH) ₂ /CC	32.69	34.33	31.66
Ni-Co(OH) ₂ /rGO1/CC	25.14	19.42	14.36
Ni-Co(OH) ₂ /rGO2/CC	22.25	17.23	7.00
Ni-Co(OH) ₂ /rGO3/CC	22.65	17.22	13.66
Ni-Co(OH) ₂ /rGO4/CC	24.90	20.53	13.06

Table S1 EIS relevant data of Ni-Co(OH)₂/rGO/CC electrodes with different content of rGO.

The test materials	Detection limit (µM)	Sensitivity (mA cm ⁻² mM ⁻¹)	References
AuPt/MOF-Graphene	0.019	0.006	[35]
Ag/M-ZIF	1.100	0.420	[36]
Ag/Fe	0.100	1.350	[37]
NiCo ₂ N/NG	0.050	0.002	[38]
Au/MnO	0.080	0.208	[39]
NiCo2O4RMNs@PEDOT/rGO	0.031	0.679	[40]
AuNPs-N-GQDs	0.120	0.186	[41]
Ni-Co(OH) ₂ /rGO3/CC	0.002	3.739	This work

Table S2 Sensing performance of H_2O_2 sensor in a recently reported.

The test materials	Detection limit	Sensitivity $(mA \ cm^{-2} \ mM^{-1})$	References
anonh an a @ ZIE	(μινι)		۲ <i>42</i> 1
graphene@ZIF	0.300	1.321	[43]
NiO nanostructures	0.500	0.004	[44]
NCAG/Fe	0.530	2.455	[45]
NBC/GCE	0.041	0.416	[46]
NiS	0.052	0.006	[47]
NiCo LDH/GCE	0.011	0.166	[12]
3D graphene/Co ₃ O ₄	0.025	3.390	[48]
Ni-Co(OH) ₂ /rGO3/CC	0.115	1.846	This work

 Table S3 Sensing performance of glucose sensor in a recently reported.

Electrodes	C _{dl} (mF)	ECSA (cm ²)
CC	1.960	110.274
rGO/CC	4.378	246.249
Ni-Co(OH) ₂ /CC	6.508	366.068
Ni-Co(OH) ₂ /rGO/CC	7.189	404.372

Table S4 C_{dl} and ECSA values of different electrodes in 0.1 M KOH.