Supplementary Information:

## Quasi-2D Perovskite Antireflection Coating to Boost Performance of Multilayered PdTe<sub>2</sub>/Ge Heterostructure-Based Near-Infrared Photodetectors

Huahan Chen, <sup>1</sup> Chao Xie, <sup>2\*</sup> Xianpeng Zhong, <sup>1</sup> Yi Liang, <sup>1</sup> Wenhua Yang, <sup>2</sup> Chunyan

Wu, <sup>1</sup> and Linbao Luo<sup>1\*</sup>

<sup>1</sup> School of Microelectronics, Hefei University of Technology, Hefei, Anhui 230009, P. R. China

<sup>2</sup> School of Electronics and Information Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, Anhui 230601, P. R. China

\* Email: chaoxie@ahu.edu.cn, luolb@hfut.edu.cn



**Figure S1**. Schematic diagram of the procedures for fabricating PdTe<sub>2</sub>/Ge heterostructure-based photodetector with quasi-2D perovskite ARC.



**Figure S2**. (a) The statistical distribution of the grain size of the  $PdTe_2$  multilayer. (b) Normalized absorbance spectra of  $(PEA)_2(MA)_{n-1}Pb_nI_{3n+1}$  perovskites with different *n* values.



**Figure S3**. (a) *I-V* curves of the  $PdTe_2/Ge$  heterostructures without and with quasi-2D perovskite ARC in the darkness. (b) lnI-V curve for estimating the diode ideality factor (*n*). (c) The plot of lnJ-V curve for calculating the barrier height of the heterostructure.

The diode characteristics of the  $PdTe_2/Ge$  heterostructure could be described by majority carriers over a zero bias barrier height ( $\Phi_{BH}$ ), from the  $PdTe_2$  to Ge, based on the thermionic emission theory:<sup>1</sup>

$$J(T,V) = J_S(T) \left[ \exp\left(\frac{eV}{nK_BT}\right) - 1 \right]$$

where *e*,  $K_{\rm B}$  and *T* represent elementary charge, Boltzmann constant, and temperature, respectively. The saturation current density  $J_{S}(T)$  is expressed as:

$$J_{S}(T) = A^{*}T^{2}exp^{[m]}(-\frac{e\Phi_{BH}}{K_{B}T})$$

where  $A^*$  denotes the effective Richardson constant, and the value is 142.8 Acm<sup>-2</sup>K<sup>-2</sup> for n-Ge.<sup>2</sup> In addition,  $J_S(T) = 6.23 \times 10^{-2}$  mAcm<sup>-2</sup> could be deduced from the ln*J-V* curve in Fig. S3(c). Therefore, the  $\Phi_{\rm BH}$  was estimated to be ~677.4 meV based on the above equations.



Figure S4. Height profile of the quasi-2D perovskite films with different thicknesses.



Figure S5. Refractive index of the quasi-2D perovskite film with a thickness of  $\sim$ 192.8 nm and PdTe<sub>2</sub> multilayer with a thickness of  $\sim$ 56.7 nm.



**Figure S6**. (a) *I-V* curves and (b) time-dependent photoresponse of the  $PdTe_2/Ge$  heterostructurebased photodetector under 1550 nm NIR light illumination with different intensities.



**Figure S7**. (a) The noise of the dark current and (b) analysis of noise spectral density of the  $PdTe_2/Ge$  heterostructure-based photodetector at zero bias. (c) The noise of the dark current and (d) analysis of noise spectral density of the  $PdTe_2/Ge$  heterostructure-based photodetector with quasi-2D perovskite ARC at zero bias.



Figure S8. (a) and (b) are temporal photoresponse of the device under 1550 nm light illumination

with varied modulating frequencies. (c) Relative balance  $(V_{\text{max}}-V_{\text{min}})/V_{\text{max}}$  versus frequency of the incident light, giving a -3 dB cutoff frequency of about 9.1 kHz.



Figure S9. Temporal photoresponse of the device under 1550 nm light illumination during operation over 1200 cycles.

## References

- E. Shi, H. Li, L. Yang, L. Zhang, Z. Li, P. Li, Y. Shang, S. Wu, X. Li, J. Wei, K. Wang, H. Zhu,
  D. Wu, Y. Fang and A. Cao, *Nano Lett.*, 2013, 13, 1776–1781.
- 2 S. M. Sze and K. K. Ng, *Physics of Semiconductor Devices*, 2007.